
Wildcard: Spreadsheet-Driven Customization of Web
Applications

Geoffrey Litt
Massachusetts Institute of Technology

Cambridge, MA, USA
glitt@mit.edu

Daniel Jackson
Massachusetts Institute of Technology

Cambridge, MA, USA
dnj@mit.edu

ABSTRACT
ManyWeb applications do not meet the precise needs of their users.
Browser extensions offer a way to customize web applications, but
most people do not have the programming skills to implement their
own extensions.

In this paper, we present spreadsheet-driven customization, a
technique that enables end users to customize software without
doing any traditional programming. The idea is to augment an
application’s UI with a spreadsheet that is synchronized with the
application’s data. When the user manipulates the spreadsheet, the
underlying data is modified and the changes are propagated to the
UI, and vice versa.

We have implemented this technique in a prototype browser
extension called Wildcard. Through concrete examples, we demon-
strate that Wildcard can support useful customizations—ranging
from sorting lists of search results to showing related data from
web APIs—on top of existing websites. We also present the design
principles underlying our prototype.

Customization can lead to dramatically better experiences with
software. We think that spreadsheet-driven customization offers a
promising new approach to unlocking this benefit for all users, not
just programmers.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments.

KEYWORDS
end-user programming, software customization, web browser ex-
tensions

ACM Reference Format:
Geoffrey Litt and Daniel Jackson. 2020. Wildcard: Spreadsheet-Driven Cus-
tomization of Web Applications. In Companion Proceedings of the 4th In-
ternational Conference on the Art, Science, and Engineering of Programming
(<Programming’20> Companion), March 23–26, 2020, Porto, Portugal. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3397537.3397541

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7507-8/20/03.
https://doi.org/10.1145/3397537.3397541

1 INTRODUCTION
Web applications often don’t meet the precise needs of their users.
Sometimes there is a browser extension available to patch an is-
sue, and if the user is a programmer they might be able to fix it
themselves. But for most people, the only recourse is to complain
to the developers, or, more likely, to simply give up. Back in 1977,
in Personal Dynamic Media [16], Alan Kay envisioned personal
computing as a medium that let a user “mold and channel its power
to his own needs,” but today, software behaves more like concrete
than clay.

In this paper, we present spreadsheet-driven customization, a
technique that enables end users to customize software without
doing any traditional programming. The idea is to augment an
application’s UI with a spreadsheet: a data table view, synchronized
live with the application’s data. When the user manipulates the
spreadsheet, the underlying data is modified and the changes are
propagated to the UI, and vice versa.

We have implemented this technique in a prototype browser
extension called Wildcard and used it to build demos which suggest
that this paradigm can support useful customizations, ranging from
sorting lists of data to adding whole new features to applications
(shown in Section 2).

Our approach requires extracting structured data from the user
interfaces of existing applications, but we hide the complexity of
data extraction from end users. Programmers write site adapters
which use web scraping techniques to extract structured data from
existing applications and map it to the spreadsheet table. Our proto-
type suggests that it is possible to implement site adapters for real
websites; Section 3 describes some of the techniques and challenges
involved.

Spreadsheet-driven customization is based on three design prin-
ciples, described in Section 4:

• Expose a universal structure: By mapping the data in all
applications to the same universal table abstraction, Wild-
card enables users to learn a generic customization toolkit
that they can apply to any site.

• Low floor, high ceiling: Wildcard provides an easy entry
point for end users, since small tweaks like sorting data
can be performed with a single click. At the same time, it
also supports a variety of richer customizations, like adding
private annotations to a webpage or joining in related data
from a web API.

• Design for an ecosystem of users: Spreadsheet-driven
customization combines the efforts of programmers and end
users, rather than putting the full burden on end users. We
also envision a role for first party developers to help make
their applications more customizable.

126

https://doi.org/10.1145/3397537.3397541
https://doi.org/10.1145/3397537.3397541


<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Geoffrey Litt and Daniel Jackson

Application UI

Data is synchronized live in both directions

User manipulates spreadsheet to 

customize the application

User continues to use 

original application UI

End user 

Spreadsheet view of
data in the application

Figure 1: An overview of spreadsheet-driven customization

Prior work [6, 8, 21] has enabled end users to create “spreadsheet-
driven applications” which use spreadsheets as a backing data layer.
Spreadsheet-driven customization applies this idea in a different
context: customizing existing software, rather than building new
software from scratch. Our technique does not require that the
application actually be backed by a spreadsheet; it merely uses
the spreadsheet as an interface for viewing and modifying the
internal state of the application. In Section 5, we describe further
how Wildcard relates to existing work on spreadsheet-driven apps,
as well as work in other areas like web customization and web
scraping.

The Wildcard extension is currently an early research prototype.
We plan to continue testing the system with our own use cases to
explore how the spreadsheet abstraction maps to real websites and
customization needs. Eventually we plan to release the tool publicly
in order to learn from real use cases, discover usability challenges,
and to test the feasibility of building and maintaining site adapters.
Section 6 describes remaining open questions and our future plans.

2 DEMOS
Here are some examples of using Wildcard to customize websites
in useful ways.

2.1 Augmenting Search Results
In 2012, the travel site Airbnb removed the ability to sort accommo-
dation searches by price. Users could still filter by price range, but
could no longer view the cheapest listings first. Many users com-
plained that the change seemed hostile to users. “It’s so frustrating!
What is the logic behind not having this function?” said one user
on the Airbnb support forum. Alas, the feature remains missing to
this day.

Using Wildcard, the user can fix this omission, while leaving the
page’s design and the rest of its functionality unchanged. Figure 2
shows an overview of augmenting the Airbnb site. First, the user
opens up the Wildcard panel, which shows a table corresponding
to the search results in the page. As they click around in the table,
the corresponding row in the page is highlighted to indicate the
mapping between the views.

Then, the user clicks on the price column header to sort the
spreadsheet and the Airbnb UI by price (Figure 2, Note A). They

also filter to listings with a user rating above 4.5 (another feature
missing in the original Airbnb UI).

After manipulating the data, the user closes the table view and
continues using the website. Because the application’s UI usually
has a nicer visual design than a spreadsheet, Wildcard does not
aim to replace it—at any time, the user can use either the UI, the
spreadsheet, or both together.

Many websites that show lists of data also offer actions on rows
in the table, like adding an item to a shopping cart. Wildcard has
the ability to make these “row actions” available in the data table
through the site adapter. In the Airbnb UI, saving multiple listings
to a Favorites list requires tediously clicking through them one by
one. Using Wildcard row actions, the user can select multiple rows
and favorite all of them with a single click (Figure 2, Note B).

Next, the user wants to jot down some notes about each listing.
To do this, they type some notes into an additional column in each
row, and the notes appear inside the listings in the original UI
(Figure 2, Note C). The annotations are saved in the browser’s local
storage and associated with the backend ID of the listing, so they
will appear in future browser sessions that display the same listing.

Wildcard also includes a formula language that enables more
sophisticated customizations. When traveling without a car, it’s
useful to evaluate potential places to stay based on how walkable
the surroundings are. Using a formula, the user can integrate Airbnb
with Walkscore, an API that rates the walkability of any location on
a 1-100 scale. When the user calls the walkscore formula with the
listing’s latitude and longitude as arguments, it returns the walk
score for that location and shows it as the cell value. Because the
cell’s contents are injected into the page, the score also appears in
the UI (Figure 2, Note D). Unlike traditional spreadsheets, formulas
automatically apply to every row in the table.

2.2 Snoozing Todos
In addition to fetching data from other sources, Wildcard formulas
can also perform computations. In this example, the user would
like to augment the TodoMVC todo list app with a “snooze” feature,
which will temporarily hide a todo from the list until a certain date.
Figure 3 shows an overview of this customization.

The user opens the table view, which shows the text and com-
pleted status of each todo. They start the customization by adding

127

https://community.withairbnb.com/t5/Hosting/Sorting-listing-by-price/td-p/559404


Wildcard: Spreadsheet-Driven Customization of Web Applications <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

Figure 2: Using Wildcard to augment the Airbnb search page for booking accommodations

128



<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Geoffrey Litt and Daniel Jackson

Figure 3: Using Wildcard to add a “snooze” feature to the TodoMVC todo list app

a new column to store the snooze date for each todo (Figure 3, Note
A).

The next step is to hide snoozed todos. The user creates a snoozed?
column,which uses a formula to computewhether a todo is snoozed—
i.e., whether it has a snooze date in the future (Figure 3, Note B).
Then, they simply filter the table to hide the snoozed todos (Figure 3,
Note C).

Because the built-in NOW() function always returns the current
datetime, snoozed todos will automatically appear once their snooze
date arrives.

Because this implementation of snoozing was built on the spread-
sheet abstraction, it is completely decoupled from this particular
todo list app. We envision that users could share these types of cus-
tomizations as generic browser extensions, which could be applied
to any site supported by Wildcard with no additional effort.

129



Wildcard: Spreadsheet-Driven Customization of Web Applications <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

2.3 Adding a Custom Datepicker
It might seem that Wildcard is only useful on websites that display
lists of tabular data, but the table metaphor is flexible enough to
represent many types of data. For example, a flight search form
on Expedia can be represented as a single row, with a column
corresponding to each input (Figure 4, Note A).

In some of the previous examples, the table cells were read-only
(because users can’t, for example, change the name or price of an
Airbnb listing). In this case, the cells are writable, which means that
changes in the table are reflected in the form inputs. This becomes
especially useful when combined with GUI widgets that can edit
the value of a table cell.

Filling in dates for a flight search often requires a cumbersome
workflow: open up a separate calendar app, find the dates for the
trip, and then carefully copy them into the form. In Wildcard, the
user can avoid this by using a datepicker widget that shows the
user’s personal calendar events (Figure 4, Note B). The user can
directly click on the correct date, and it gets inserted into both the
spreadsheet and the original form.

In this sectionwe’ve presented just a few use cases for spreadsheet-
driven customization, to suggest some possibilities of the paradigm.
We think the spreadsheet model is flexible enough to support a
wide range of other useful modifications while remaining familiar
and easy to use.

3 SYSTEM IMPLEMENTATION
Wildcard is written in Typescript, and built as a cross-browser
extension for Chrome, Firefox, and Edge.

Unlike the freeform 2D grid of traditional spreadsheets, Wildcard
represents data in a relational table with named and typed columns.
We still refer to our view as a spreadsheet because it includes a
data table UI and reactive formulas, two essential ingredients of the
spreadsheet interaction model.

In order to promote extensibility, Wildcard is implemented as
a small core program along with several types of plugins: site
adapters, formulas, and cell editors. The core contains functionality
for displaying the data table and handling user interactions, and is
built on the Handsontable Javascript library.

Site adapters are a key part of Wildcard, since they specify the
bidirectional connection between the web page and its structured
data representation. Wildcard provides an API for programmers to
concisely express how the DOM should be mapped to this structure.

Sometimes, more advanced scraping techniques are necessary to
extract data from the application. For example, we have prototyped
a mechanism for site adapters to observe AJAX requests made by
the browser and extract data directly from JSON responses. This
mechanism was used to implement the Airbnb Walkscore example,
since latitude and longitude aren’t shown in the Airbnb UI, but they
are available in AJAX responses. This technique seems promising
because AJAX responses already contain data in a structured form,
and web applications are increasingly loading data using AJAX.
Another technique we might consider is enabling site adapters to
scrape data across multiple pages for paginated lists of results (as
explored in [14]).

Because Wildcard requires a live bidirectional connection be-
tween the UI and the structured data, there are some additional
challenges beyond those typically associated with web scraping.

First, the site adapter needs to support sending updates from the
table to the original page. We have made this fairly straightforward,
because most DOM manipulation is not performed directly by the
site adapter. Instead, Wildcard automatically mutates the DOM
to reflect the spreadsheet state, using the same specification that
was used to extract the data. The only exception to this is row
actions (like favoriting an Airbnb listing), which are implemented
as Javascript functions that can perform arbitrary behaviors like
simulating clicks on buttons or mutating the DOM.

Another challenge is triggering updates to the spreadsheet data
in response to UI changes that happen after initial page load. Site
adapters are responsible for recognizing these changes by observing
the DOM. So far, we have been able to use event listeners and the
MutationObserver API to successfully observe changes, but it may
prove challenging to observe changes on some sites only through
the DOM.

4 DESIGN PRINCIPLES
The idea of spreadsheet-driven customization is guided by three
design principles, inspired by prior work and our own experimen-
tation. We think these principles might also broadly inform the
design of tools for end user software customization.

4.1 Expose a Universal Data Structure
Today, most personal computing consists of using applications,
which bundle together behavior and data to provide some set of
functionality. While there are some limited points of interoperabil-
ity, applications generally are designed to operate independently
of one another.

Computing does not need to be organized this way. For example,
UNIX offers a compelling alternative: many small single-purpose
programs, all of whichmanipulate a universal format of text streams.
Users get high leverage from mastering a text editor and other text
manipulation tools, since they can be applied to a huge variety of
tasks. A user’s preferred text editor can even serve as an interactive
input mechanism in shell programs, e.g. for editing git commit
messages.

Spreadsheet-driven customization aims to bring some of this
UNIX ethos to the world of isolated Web applications by creating a
consistent data structure to represent the data inside many applica-
tions. In UNIX, the universal format is a text stream; in Wildcard, it
is a relational table. Because Wildcard maps the data from all appli-
cations to the table format, users can master the tools provided by
Wildcard and apply them to customize many different applications.

This idea relates to Beaudouin-Lafon and Mackay’s notion of
polymorphic interface instruments [5], which are UI elements that
can be used in different contexts (for example, a color picker that
can be used in many drawing applications). It also relates to ideas
of literacy in a medium. DiSessa notes that textual literacy depends
on the fact that writing can be adapted to many different genres
[10]: if people needed to relearn reading and writing from scratch
when switching from essays to emails, the medium would lose
its potency. Generic tools are especially important for software

130

https://handsontable.com/


<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Geoffrey Litt and Daniel Jackson

Figure 4: Using Wildcard to augment the Expedia page for booking a flight

customization, because a common barrier to customizing software
is not having enough time [20]—it’s more likely that people will
customize software frequently if they can reuse the same tools
across many applications.

This design principle leads to several challenges. First, any uni-
versal abstraction has its limits, and may not naturally express the
data in every application. We plan to explore the limits of the table
abstraction further by trying to build adapters for more sites with
varied data formats. We expect that many types of data will fit
easily into tables: lists of search results, news articles, and mes-
sages can all naturally be seen as relations. Documents (e.g. Google
Docs) or graphs (e.g. social network friend graphs) may prove more
challenging to map to the table abstraction.

4.2 Low Floor, High Ceiling
Seymour Papert advocated for programming systems to have a “low
floor,” making it easy for novices to get started, and a “high ceiling,”
providing a large range of possibilities for more sophisticated users
[24]. Our goal is for spreadsheet-driven customization to meet both
of these criteria.

One of the most interesting properties of spreadsheets is that
users familiar with only a tiny sliver of their functionality (e.g.,
storing tables of numbers and computing simple sums) can still use
them in valuable ways. This supports the user’s natural motivation
to continue using the tool, and to eventually learn its more powerful
features if needed [23]. In contrast, many traditional programming

131



Wildcard: Spreadsheet-Driven Customization of Web Applications <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

Core • Render table
• Manage user interaction

• Sorting/filtering
• User annotations

Site 
adapters

Original web page DOM

Formulas
• Provide computational primitives
• Access data from Web APIs

Cell editors
• Visualize cell contents
• Custom UIs for editing values

• Sort/filter page elements
• Inject new data
• Implement row actions

• Extract structured data
• Trigger data refreshes

Wildcard system

Figure 5: The architecture of the Wildcard prototype

systems require an enormous upfront time investment before some-
one is able to write a program that helps them achieve a useful
task.

As part of ensuring a low floor, we have focused on including
features that have immediate value for novices. For example, a
user can sort a table with a single click, or simply type in some
annotations. We would expect many Wildcard users to start by
using these simpler features before moving on tomore sophisticated
features like formulas.

Another aspect of providing a low floor is providing an “in-
place toolchain” [1]: minimizing the effort of moving from using to
customizing by making customization tools available in the same
environment where the user is already using the software. This
quality is distinct from the level of technical skill needed to use the
tool. For example, setting up a workflow in an end user program-
ming system like IFTTT does not require much programming skill,
but it does require leaving the user’s normal software and entering
a separate environment; conversely, running a Javascript snippet in
the browser console requires programming skills, but can be done
immediately in the flow of using a website.

Wildcard provides an in-place toolchain because the spreadsheet
can be instantly opened in the browser window while using any
supported website. Once the user starts editing, Wildcard also pro-
vides live feedback, so that even if a user isn’t yet totally familiar
with Wildcard, they can learn to use the system through experi-
mentation.

Since we have only built a few site adapters and demos so far,
it is still too early to tell how high the ceiling is for the customiza-
tions that can be achieved with Wildcard. But we think that with
enough built-in formulas (both standard spreadsheet formulas for
computation, and formulas for fetching data from other sources),
the language could support a wide variety of customizations. We
plan to explore this aspect further by trying to solve real problems
and observing where limitations emerge in practice (discussed more
in Section 6).

4.3 Design For an Ecosystem of Users
Real-world spreadsheet usage is highly collaborative. Many users
only perform simple changes, while their coworkers help with writ-
ing complex formulas or programming macros [22]. Inspired by this
collaborative dynamic, we aim for spreadsheet-driven customiza-
tion to bring together the abilities of different users.

The main way we do this is by separating website customization
into two separate stages: structured data extraction, performed
by programmers who code site adapters in Javascript, and then
customization using the resulting spreadsheet, which is available
to all end users. This architecture frees end users from needing to
think about data extraction, and enables a community of end users
to reuse the efforts of programmers building site adapters.

The group of users building adapters does not necessarily need
to be limited only to programmers. In the future, we plan to explore
enabling end users to also create site adapters, drawing on related
work in this area [9, 14]. But even then, we still envision a separation
between highly motivated, tech-savvy end users building adapters,
and more casual end users just using the spreadsheet view.

The first party developers of the original software can also play
a role in enabling customization. Although spreadsheet-driven cus-
tomization does not depend on cooperation from first party website
developers, their participation in exposing structured data would
eliminate the need for third party site adapters. The first parties
could themselves benefit from such a system; providing Wildcard
support—a fairly low-effort undertaking for a developer with direct
access to the structured data—would allow users to build extensions
to fulfill some of their own feature requests. There is also precedent
for first parties implementing an official client extension API: for
several years, Google maintained an official extension API in Gmail
for Greasemonkey scripts to use.

Google no longer maintains its own API, but third parties have
continued to maintain successful replacements—Gmail.js [25] is an
open source wrapper API with over 70 contributors and hundreds
of commits. This library demonstrates another benefit of designing
for an ecosystem: it’s easier for many programmers to collectively
maintain a generic site adapter that can support many extensions,
rather than each programmer creating custom scraping logic for
their own single-purpose extension.

5 RELATEDWORK
Spreadsheet-driven customization relates to existing work in four
areas: malleable software, web customization, spreadsheet-driven
applications, and web scraping.

5.1 Malleable Software
In the broadest sense, Wildcard is inspired by systems aiming to
make software into a dynamic medium where end users frequently
create and modify software to meet their own needs, rather than
only consuming applications built by programmers. These systems
include Smalltalk [16], Hypercard [15], Boxer [11], Webstrates [17],
and Dynamicland [26]. In fact, the name Wildcard comes from the
internal pre-release name for Hypercard, a project which doubly
inspired our work by promoting both software modification by end
users and the ideas behind the Web.

132

https://ifttt.com/


<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Geoffrey Litt and Daniel Jackson

Although Wildcard shares broad goals with these projects, it
employs a different solution strategy. These other systems generally
require building software from scratch in a new environment. On
the other hand, Wildcard aims to maximize the malleability of
software built with existing tools.

With substantial future work, we think Wildcard could become
more similar to these other projects, growing from a platform for
tweaking existing software into a platform for building new soft-
ware from scratch. This would likely end up resembling existing
tools for building spreadsheet-driven applications (discussed more
below), but with an additional focus on customization by end users
of the software.

5.2 Web Customization
Wildcard’s goals are closely shared with other systems that provide
interfaces in the browser for end users to customize websites.

5.2.1 Structured Augmentation. Wildcard’s solution approach is
most similar to other tools that identify structured data in a web
page and then use that structure to support end user customization
of the page.

Sifter [14] enables users to sort and filter lists of data on web
pages, which resembles Wildcard’s sorting functionality. The un-
derlying mechanism is similar, since Sifter extracts structured data
from the page to enable its user-facing functionality. However, the
systems also have significant differences:

• Wildcard hides data extraction from end users by having
programmers develop site adapters, whereas Sifter uses a
combination of automated heuristics and interactive user
feedback to involve end users in extracting data. User studies
of Sifter indicated that users were surprised by the need to
participate in the data augmentation process, which influ-
enced our decision to hide this process from the user. We
suspect Wildcard’s workflow results in a simpler end user
experience, but at the cost of only working with a smaller
subset of supported websites.

• Wildcard supports a broad set of customizations. Sifter only
supports sorting and filtering.

• Wildcard shows the structured data table directly to the user.
Sifter only shows sorting controls, and does not reveal the
underlying data table.

Thresher [12] enables users to create wrappers which map un-
structured website content to Semantic Web content. Like Wildcard
and Sifter, Thresher augments the page: once semantic content has
been identified, it creates context menus in the original website
which allow users to take actions based on that content. Wildcard
and Thresher focus on complementary parts of the customization
process. Thresher aims to enable end users to create content wrap-
pers, but the actions available on the structured data are determined
in advance. Conversely, Wildcard delegates wrapper creation to pro-
grammers, but gives end users more flexibility to use the structured
data in an open-ended way.

5.2.2 Sloppy Augmentation. “Sloppy programming” [19] tools like
Chickenfoot [7] and Coscripter [18] enable users to create web
automation scripts without directly interacting with the DOM. The
scripts can perform actions like filling in text boxes and clicking

on buttons. Users express the desired page elements in natural,
informal terms (e.g. writing “the username box” to represent the
textbox closest to the label “username”), and then the system uses a
set of heuristics to determine which elements most likely match the
user’s intent. This approach allows for expressing a wide variety of
commands with minimal training, but it also has downsides [19]:

• Reliability: It can be difficult to know whether a command
will consistently work over time. Changes to the website or
to the system’s heuristics can cause unexpected changes in
behavior.

• Discoverability: it can be difficult for users to explore the
space of possible commands.

Wildcard offers a sharp contrast to sloppy programming, instead
choosing to expose a high degree of structure through the spread-
sheet table. Wildcard offers more consistency; for example, clicking
a sort header will always work correctly as long as the site adapter
is maintained. Wildcard also offers clearer affordances for what
types of actions are possible. On the other hand, Wildcard’s explicit
site adapter approach means that fewer websites can be customized,
and also that users can’t perform customizations if the relevant
data is not exposed in the spreadsheet.

Another difference between Wildcard and these tools is that
there is no way for users to express imperative workflows with
sequences of actions in Wildcard. Chickenfoot and Coscripter have
shown these types of workflows to be useful in practice so it might
be worth considering how to incorporate them, but it’s not obvious
how such workflows could fit into Wildcard. Spreadsheets have
a fundamentally different computation model, and site adapters
created by programmers cannot easily account for every possible
action a user might want to perform in a page.

5.3 Spreadsheet-Driven Applications
Many researchers and companies have explored the idea of spreadsheet-
driven applications: using spreadsheets as a backing data store and
computation layer for interactive web applications, enabling end
users to create such applications more easily. Research projects like
Object Spreadsheets [21], Quilt [6], Gneiss [8], and Marmite [27], as
well as commercial tools like Airtable [2] and Glide [3] allow users
to view data in a spreadsheet table, compute over the data using
formulas, and then connect the table to a GUI. Because many users
are already familiar with spreadsheets, this way of creating appli-
cations tends to be much easier than traditional software methods;
for example, in a user study of Quilt, many users were able to create
applications in under 10 minutes, even if they expected it would
take them many hours.

Wildcard builds on this idea, but applies it to modifying existing
applications, rather than building new applications from scratch.
For many people, we suspect that tweaking existing applications
provides more motivation as a starting point for programming than
creating a new application from scratch.

An important design decision for tools in this space is how far
to deviate from traditional spreadsheets like Microsoft Excel or
Google Sheets. Quilt and Glide use existing spreadsheet software
as a backend, providing maximum familiarity for users, and even
compatibility with existing spreadsheets. Gneiss has its own spread-
sheet implementation with additional features useful for building

133



Wildcard: Spreadsheet-Driven Customization of Web Applications <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

GUIs. Marmite provides a live data view that resembles a spread-
sheet, but programming is actually done using a separate data flow
pane rather than spreadsheet formulas. Marmite’s approach led to
some confusion in a user study, because users expected behavior
more similar to spreadsheets [27]. Airtable deviates the furthest:
although the user interface resembles a spreadsheet, the underlying
structure is a relational database with typed columns. Wildcard’s
table is most similar to Airtable; the structure of a relational table
is most appropriate for most data in websites, and we have not yet
found a need for arbitrary untyped cells.

5.4 Web Scraping / Data Extraction
Web scraping tools focus on extracting structured data out of un-
structured web pages. Web scraping is closely related to the imple-
mentation of Wildcard, but has different end goals: web scraping
generally extracts static data for processing in another environment,
whereas Wildcard customizes the application’s UI by maintaining a
bidirectional connection between the extracted data and the page.

Web scraping tools differ in how much structure they attempt to
map onto the data. Some tools like Rousillon [9] extract data in a
minimally structured relational format; other tools like Piggy Bank
[13] more ambitiously map the data to a rich semantic schema. In
Wildcard, we chose to avoid semantic schemas, in order to minimize
the work associated with creating a site adapter.

In the future, we might try to integrate existing web scraping
tools, to help create more reliable site adapters for Wildcard with
less work, and to open up adapter creation to end users. Although
Wildcard has additional requirements beyond traditional web scrap-
ing as discussed in Section 3, there is still enough overlap that
existing tools might prove helpful.

6 CONCLUSION AND FUTUREWORK
In this paper, we have presented spreadsheet-driven customization, a
technique that enables end users to customize software by augment-
ing an application’s UI with a spreadsheet. We still have many open
questions which we hope to answer through targeted development
and usage of Wildcard.1

Themost important question is: what are the limits of this compu-
tational model? What types of useful customizations can it support
or not support? While initial demos suggest a variety of use cases,
we plan to develop more site adapters and demos to explore this
question further. We will start by privately testing the system with
our own needs and then eventually deploy the tool publicly once
it has a stable API and can support a critical mass of sites and use
cases. We also plan to run usability studies to evaluate and improve
the design of the tool.

We suspect that some areas of the current model may prove
overly simplistic. For example, Wildcard’s data model currently
shows a single table at a time, without any notion of relationships
between tables. A richer data model with foreign keys might help
support certain use cases. For designing a spreadsheet interface on
top of a richer relational model, we could learn from other systems
that address this design challenge [4, 21].
1Up to date information about Wildcard is available on the project website (https:
//geoffreylitt.com/wildcard), which includes a signup for receiving updates and notifi-
cations about a public release. We also welcome hearing from readers who might be
interested in being private beta testers or who have feedback on the project.

Another question is how easily site adapters can be created and
maintained for real websites, which often include complex markup
and change frequently. We plan to explore this question by creating
adapters for sites with different data structures and in different
domains, and perhaps running user tests with programmers. Pos-
sible future improvements we’ve considered include developing
automated heuristics to assist with the adapter creation process and
developing new abstractions that make it easier for programmers
to efficiently create robust adapters.

Ultimately, we hope that spreadsheet-driven customization helps
the Web reach its full potential as a dynamic medium that users
can mold to their own needs.

ACKNOWLEDGMENTS
This project was partially supported by the SaTC: CORE program
of the CISE division of the National Science Foundation, Award
Number 1801399, and by the International Design Center, a collab-
oration between MIT and the Singapore University of Technology
and Design. Thanks to Tarfah Alrashed, Glen Chiacchieri, David
Karger, Steve Krouse, Rob Miller, Santiago Perez De Rosso, Arvind
Satyanarayan, DanielWindham,Maggie Yellen, and the anonymous
workshop reviewers for providing valuable feedback on this work.

REFERENCES
[1] 2019. End-User Programming. https://www.inkandswitch.com/end-user-

programming.html.
[2] 2020. Airtable. https://airtable.com.
[3] 2020. Glide. https://www.glideapps.com/.
[4] Eirik Bakke and David R. Karger. 2016. Expressive Query Construction through

Direct Manipulation of Nested Relational Results. In Proceedings of the 2016
International Conference on Management of Data - SIGMOD ’16. ACM Press, San
Francisco, California, USA, 1377–1392. https://doi.org/10.1145/2882903.2915210

[5] Michel Beaudouin-Lafon and Wendy E. Mackay. 2000. Reification, Polymorphism
and Reuse: Three Principles for Designing Visual Interfaces. In Proceedings of the
Working Conference on Advanced Visual Interfaces (AVI ’00). ACM, New York, NY,
USA, 102–109. https://doi.org/10.1145/345513.345267

[6] Edward Benson, Amy X. Zhang, and David R. Karger. 2014. Spreadsheet Driven
Web Applications. In Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology - UIST ’14. ACM Press, Honolulu, Hawaii, USA,
97–106. https://doi.org/10.1145/2642918.2647387

[7] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller.
2005. Automation and Customization of Rendered Web Pages. In Proceedings of
the 18th Annual ACM Symposium on User Interface Software and Technology - UIST
’05. ACM Press, Seattle, WA, USA, 163. https://doi.org/10.1145/1095034.1095062

[8] Kerry Shih-Ping Chang and Brad A. Myers. 2014. Creating Interactive Web
Data Applications with Spreadsheets. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology - UIST ’14. ACM Press,
Honolulu, Hawaii, USA, 87–96. https://doi.org/10.1145/2642918.2647371

[9] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scraping
Distributed Hierarchical Web Data. In The 31st Annual ACM Symposium on User
Interface Software and Technology - UIST ’18. ACM Press, Berlin, Germany, 963–
975. https://doi.org/10.1145/3242587.3242661

[10] Andrea A. diSessa. 2000. Changing Minds: Computers, Learning, and Literacy.
MIT Press, Cambridge, MA, USA.

[11] A. A diSessa and H. Abelson. 1986. Boxer: A Reconstructible Computational
Medium. Commun. ACM 29, 9 (Sept. 1986), 859–868. https://doi.org/10.1145/
6592.6595

[12] Andrew Hogue and David Karger. 2005. Thresher: Automating the Unwrapping
of Semantic Content from the World Wide Web. In Proceedings of the 14th Inter-
national Conference on World Wide Web - WWW ’05. ACM Press, Chiba, Japan,
86. https://doi.org/10.1145/1060745.1060762

[13] David Huynh, Stefano Mazzocchi, and David Karger. 2005. Piggy Bank: Experi-
ence the Semantic Web Inside Your Web Browser. In The Semantic Web – ISWC
2005 (Lecture Notes in Computer Science), Yolanda Gil, Enrico Motta, V. Richard
Benjamins, and Mark A. Musen (Eds.). Springer, Berlin, Heidelberg, 413–430.
https://doi.org/10.1007/11574620_31

134

https://geoffreylitt.com/wildcard
https://geoffreylitt.com/wildcard
https://doi.org/10.1145/2882903.2915210
https://doi.org/10.1145/345513.345267
https://doi.org/10.1145/2642918.2647387
https://doi.org/10.1145/1095034.1095062
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/6592.6595
https://doi.org/10.1145/6592.6595
https://doi.org/10.1145/1060745.1060762
https://doi.org/10.1007/11574620_31


<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Geoffrey Litt and Daniel Jackson

[14] David F. Huynh, Robert C. Miller, and David R. Karger. 2006. Enabling Web
Browsers to Augment Web Sites’ Filtering and Sorting Functionalities. In Pro-
ceedings of the 19th Annual ACM Symposium on User Interface Software and
Technology - UIST ’06. ACM Press, Montreux, Switzerland, 125. https://doi.org/
10.1145/1166253.1166274

[15] Hypercard. 2019. HyperCard. Wikipedia (Dec. 2019).
[16] A. Kay and A. Goldberg. 1977. Personal Dynamic Media. Computer 10, 3 (March

1977), 31–41. https://doi.org/10.1109/C-M.1977.217672
[17] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay, and

Michel Beaudouin-Lafon. 2015. Webstrates: Shareable Dynamic Media. In Pro-
ceedings of the 28th Annual ACM Symposium on User Interface Software & Tech-
nology - UIST ’15. ACM Press, Daegu, Kyungpook, Republic of Korea, 280–290.
https://doi.org/10.1145/2807442.2807446

[18] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter:
Automating & Sharing How-to Knowledge in the Enterprise. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI ’08). ACM,
New York, NY, USA, 1719–1728. https://doi.org/10.1145/1357054.1357323

[19] Greg Little, Robert C. Miller, Victoria H. Chou, Michael Bernstein, Tessa Lau,
and Allen Cypher. 2010. Sloppy Programming. In No Code Required. Elsevier,
289–307. https://doi.org/10.1016/B978-0-12-381541-5.00015-8

[20] Wendy E. Mackay. 1991. Triggers and Barriers to Customizing Software. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

Reaching through Technology - CHI ’91. ACM Press, New Orleans, Louisiana,
United States, 153–160. https://doi.org/10.1145/108844.108867

[21] Matt McCutchen, Shachar Itzhaky, and Daniel Jackson. 2016. Object Spreadsheets:
A New Computational Model for End-User Development of Data-Centric Web
Applications. In Proceedings of the 2016 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software - Onward!
2016. ACM Press, Amsterdam, Netherlands, 112–127. https://doi.org/10.1145/
2986012.2986018

[22] Bonnie A. Nardi and James R. Miller. 1990. An Ethnographic Study of Distributed
Problem Solving in Spreadsheet Development. ACM Press, 197–208.

[23] Bonnie A. Nardi and James R. Miller. 1991. Twinkling Lights and Nested Loops:
Distributed Problem Solving and Spreadsheet Development. International Journal
of Man-Machine Studies 34, 2 (Feb. 1991), 161–184. https://doi.org/10.1016/0020-
7373(91)90040-E

[24] Mitchel Resnick. 2016. Designing for Wide Walls.
https://design.blog/2016/08/25/mitchel-resnick-designing-for-wide-walls/.

[25] Kartik Talwar. 2019. Gmail.Js. https://github.com/KartikTalwar/gmail.js.
[26] Bret Victor. 2020. Dynamicland. https://dynamicland.org/.
[27] Jeffrey Wong and Jason I. Hong. 2007. Making Mashups with Marmite: Towards

End-User Programming for the Web. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems - CHI ’07. ACM Press, San Jose, California,
USA, 1435–1444. https://doi.org/10.1145/1240624.1240842

135

https://doi.org/10.1145/1166253.1166274
https://doi.org/10.1145/1166253.1166274
https://doi.org/10.1109/C-M.1977.217672
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1016/B978-0-12-381541-5.00015-8
https://doi.org/10.1145/108844.108867
https://doi.org/10.1145/2986012.2986018
https://doi.org/10.1145/2986012.2986018
https://doi.org/10.1016/0020-7373(91)90040-E
https://doi.org/10.1016/0020-7373(91)90040-E
https://doi.org/10.1145/1240624.1240842

	Abstract
	1 Introduction
	2 Demos
	2.1 Augmenting Search Results
	2.2 Snoozing Todos
	2.3 Adding a Custom Datepicker

	3 System Implementation
	4 Design Principles
	4.1 Expose a Universal Data Structure
	4.2 Low Floor, High Ceiling
	4.3 Design For an Ecosystem of Users

	5 Related Work
	5.1 Malleable Software
	5.2 Web Customization
	5.3 Spreadsheet-Driven Applications
	5.4 Web Scraping / Data Extraction

	6 Conclusion and Future Work
	Acknowledgments
	References

