
End-User Software Customization by Direct
Manipulation of Tabular Data

Geoffrey Litt
Massachusetts Institute of Technology

Cambridge, MA, USA
glitt@mit.edu

Daniel Jackson
Massachusetts Institute of Technology

Cambridge, MA, USA
dnj@mit.edu

Tyler Millis
Massachusetts Institute of Technology

Cambridge, MA, USA
tmillis@alum.mit.edu

Jessica Quaye
Massachusetts Institute of Technology

Cambridge, MA, USA
jquaye@alum.mit.edu

Abstract
Customizing software should be as easy as using it. Unfortu-
nately, most customizationmethods require users to abruptly
shift from using a graphical interface to writing scripts in a
programming language.
We introduce data-driven customization, a new way for

end users to extend software by direct manipulation with-
out doing traditional programming. We augment existing
user interfaces with a table view showing the structured
data inside the application. When users edit the table, their
changes are reflected in the original UI. This simple model
accommodates a spreadsheet formula language and custom
data-editing widgets, providing enough power to implement
a variety of useful extensions.

We illustrate the approach withWildcard, a browser exten-
sion that implements data-driven customization on the web
using web scraping. Through concrete examples, we show
that this paradigm can support useful extensions to many
real websites, and we share reflections from our experiences
using the tool.
Finally, we share our broader vision for data-driven cus-

tomization: a future where end users have more access to
the data inside their applications, and can more flexibly re-
purpose that data as part of everyday software usage.

CCS Concepts: • Human-centered computing → Web-
based interaction; • Software and its engineering→ In-
tegrated and visual development environments.

Keywords: end user programming, software customization,
browser extensions, web automation, spreadsheets

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
Onward! ’20, November 18–20, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8178-9/20/11.
https://doi.org/10.1145/3426428.3426914

ACM Reference Format:
Geoffrey Litt, Daniel Jackson, Tyler Millis, and Jessica Quaye. 2020.
End-User Software Customization by Direct Manipulation of Tab-
ular Data. In Proceedings of the 2020 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward! ’20), November 18–20, 2020, Virtual,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3426428.3426914

1 Introduction
Many applications don’t meet the precise needs of their users,
and it is impossible for developers to anticipate everyone’s
unique requirements. End user customization systems can
help close this gap, by empowering non-programmers to
modify their software to satisfy their personal goals.
Many end user customization systems [7, 9, 10, 17] of-

fer a scripting model. They use various strategies to make
programming more approachable: friendly syntax, a visual
programming environment, or macro recording to bootstrap
from concrete demonstrations. But all these techniques build
on the same fundamental foundation: an imperative pro-
gramming model, with statements, mutable variables, and
loops.
We have known for decades about an alternative: direct

manipulation [21], where “visibility of the object of interest”
replaces “complex command language syntax.” Direct ma-
nipulation is the de facto standard in GUIs today, but when
it comes to customizing those GUIs, it is rarely to be found.
Switching from using an application to customizing it via
scripting requires an abrupt shift in interaction model, and
poses a steep learning barrier for users not familiar with
programming.

We subscribe to MacLean et al.’s vision of a “gentle slope”
[19] free of such “cliffs,” where users should only need to
makeminimal and incremental investments in skill to achieve
their desired customizations. We seek to contribute to this
gentle slope with a newmethod for customizing software via
direct manipulation, taking inspiration from visual database
query interfaces and spreadsheets, which have successfully

https://doi.org/10.1145/3426428.3426914
https://doi.org/10.1145/3426428.3426914
https://doi.org/10.1145/3426428.3426914

Onward! ’20, November 18–20, 2020, Virtual, USA Geoffrey Litt, Daniel Jackson, Tyler Millis, and JessicaQuaye

Application UI

Data is synchronized live in both directions

User manipulates table to

customize the application

User continues to use

original application UI

End user

Table view of
data in the application

Figure 1. An overview of data-driven customization

enabled millions of end users to compute with data through
direct manipulation.
In our proposed paradigm, data-driven customization, an

application’s UI is augmented with a table view where the
user can see and manipulate the application’s internal data.
These changes don’t just apply to the table; they also re-
sult in immediate changes to the application’s original user
interface. The user can sort/filter data in the UI, inject anno-
tations, pull in related information from other web services,
and more, all using the table as a mediating interface. In-
teracting with the table view resembles interacting with a
familiar spreadsheet, but results in customizing an existing
application.
To explore this idea in a real context, we have developed

a browser extension called Wildcard that uses web scraping
techniques to implement data-driven customization for exist-
ingWeb applications. We introduce the tool with an example
customization of Hacker News in Section 2, and then describe
the implementation in Section 3. In Section 4, we present
evidence that Wildcard can produce useful customizations,
by sharing reflections from customizing 11 different websites
in ways that met our own personal needs.

Wildcard is just an initial proof of concept of data-driven
customization. In Section 5, we discuss our broader vision for
how this style of customization could change the relationship
between users and creators of software, focusing on three
ideas:

• Decoupling data from applications: On the modernWeb,
data is often stored in proprietary silos, limiting the
agency of users to choose their applications and flexi-
bly work with data.We propose data-driven customiza-
tion as an incremental step towards a more decen-
tralized architecture, where users gain more control
over the storage, processing and display of information
from web services.

• Customization by direct manipulation: We explain how
data-driven customization can provide a gentle slope,

by allowing a user to customize an application by di-
rectly seeing and changing its data, rather than by
writing imperative scripts.

• Semantic wrappers: Typically, tools that don’t rely on
official extension APIs resort to offering low-level APIs
for customization. Instead, we propose a community-
maintained library of semantic wrappers around ex-
isting applications, enabling end users to work with
domain data rather than low-level representations.

In Section 6 we discuss connections to related work. Our
goals overlap with software customization tools, and our
methods overlap with direct manipulation interfaces for
working with structured data, including visual database
query systems and spreadsheets. Finally, in Section 7, we
conclude and describe opportunities for future work.

2 Example Scenario
To concretely illustrate the user experience of data-driven
customization, we present a scenario of customizing Hacker
News, a popular tech news aggregator. Figure 2 shows ac-
companying screenshots.

Opening the table: When the user opens Hacker News
in a browser equipped with the Wildcard extension, they
see a table at the bottom of the page. It contains a row for
each link on the homepage, listing information like the title,
URL, submitter username, number of points, and number of
comments (Figure 2, Note A). The end user didn’t need to do
any work to create this table, because a programmer previ-
ously created an adapter to extract data from this particular
website, and contributed it to a shared library of adapters
integrated into Wildcard.

Sorting by points: First, the user decides to change the
ranking of links on the homepage. Hacker News itself uses a
ranking algorithm in which the position of an article depends
not only on its point count (a measure of popularity), but
also on how long it has been on the site. If the user hasn’t
been checking the site frequently, it’s easy to miss a popular
article that has fallen lower on the list. Sorting the page just
by points would achieve a more stable ranking.

https://news.ycombinator.com/
https://news.ycombinator.com/

End-User Customization by Direct Manipulation of Tabular Data Onward! ’20, November 18–20, 2020, Virtual, USA

Figure 2. Customizing Hacker News by interacting with a table view

Onward! ’20, November 18–20, 2020, Virtual, USA Geoffrey Litt, Daniel Jackson, Tyler Millis, and JessicaQuaye

To achieve this ordering, the user simply clicks on the
“points” column header in the table. This sorts the table view
by points, and the website UI also becomes sorted in the same
order (Figure 2, Note B). Internally, Wildcard has changed
the webpage’s DOM to synchronize it with the sort order of
the table. This sort predicate is also persisted in the browser
and reapplied automatically the next time the user loads the
page, so they can always browse the page sorted by points.

Adding estimated read times: Next, the user decides to
attempt a more substantial customization: adding estimated
read times to each article, in order to prioritize reading deeper
content.
The table contains additional empty columns where the

user can enter spreadsheet-like formulas to compute derived
values. The user enters a formula into the first column for
user-defined formulas or data, which is named user1 by
default (Figure 2, Note C): =ReadTimeInSeconds(link).

This formula calls a built-in function ReadTimeInSeconds
that uses a third-party public web API to compute an esti-
mated read time for the URL’s contents. The link argument
in the formula refers to a column name in the table; the for-
mula is automatically evaluated across all rows in the table,
using the value of link for each row.
The user clicks the user1 column header to sort the ar-

ticles on the page in descending order of estimated read
time. They would also like to display the read times in the
page, but a number in seconds isn’t the most legible for-
mat, so they enter another formula in the user2 column:
=Concat(Round(user1/60), "min read"). This formula
converts seconds to minutes by dividing by 60 and rounding,
then concatenates the result with a string label, producing
results like “21 min read”.

Finally, the user clicks a menu option in the table header to
display the contents of this new column in the original page
(Figure 2, Note D). Each article on the page now shows an
annotation with the estimated read time in minutes. (The for-
matting of annotations was determined by the programmer
who created the adapter for Hacker News.)

Adding manual annotations: The user can manually
add notes to the table, by entering data values into the table
without formulas. In this case, the user jots down a few notes
in another column about articles they might want to read,
and the notes appear in the page next to the read times
(Figure 2, Note D). The annotations are also stored in the
browser’s local storage so they can be retrieved on future
visits.

Filtering out visited links: The user can filter out ar-
ticles they have already read. (We omit this example from
the figure for brevity.) The user can call a built-in function
that returns a boolean depending on whether a URL is in the
browser’s history: =Visited(link).

They can then filter the table to only contain rows where
this formula column contains false; links that the user has
already visited are hidden both from the table view and the

Web page
DOM

scraped
data

DOM
edits

Both table adapters expose a uniform
table adapter interface

8ery engine produces a
combined and sorted table

read/write
local table

DOM Scraping
table adapter

Local Storage
table adapter

4ery engine

Browser
local storage

<html>

</html>

id

1 300

500

200

2

3

title points

Big news

New product

Show HN

id

1

3

user1

read this

looks fun

user1id

1 300

500

200

2

3

title points DESC

Big news

New product

Show HN looks fun

read this

Figure 3. The table adapter architecture

original page. This is an example of a customization that the
original website could not have implemented, since websites
don’t have access to the browser history for privacy rea-
sons. But by using Wildcard, the user was able to implement
the customization locally, without needing to expose their
browser history to Hacker News.
This scenario has shown a few examples of how data-

driven customizations empower a user to improve their ex-
perience of a website. Section 4 explains many other use
cases and contexts where the technique applies, but first we
explain how the system works internally.

3 System Architecture
Figure 3 summarizes the overall architecture of data-driven
customization, using a simplified illustration of the Hacker
News example scenario. The name and points value for each
article is scraped from the web page DOM, and user annota-
tions are loaded from the brower’s local storage.
First, the web page and the browser storage are each

wrapped by a table adapter, which defines a bidirectional
mapping between an underlying data source and a table.
In addition to a read mapping for how the underlying data

End-User Customization by Direct Manipulation of Tabular Data Onward! ’20, November 18–20, 2020, Virtual, USA

should be represented as a table, it also has a write map-
ping defining the effects that edits have on the original data
source.
The local storage adapter has a trivial mapping: it loads

a table of data stored in the browser, and persists edits to
that state. The mapping logic of the DOM scraping adapter
is much more involved. It implements web scraping logic to
produce a table of data from the web page, and turns edits
into DOM manipulations, such as reordering rows of data
on the page.
The two tables are then combined into a single table for

the user to view and edit. The query engine is responsible
for creating this combined view, and routing the user’s edits
back to the individual table adapters. In this example, the
query engine has joined the two tables together by a shared
ID column, and sorted the result by the points column.

We now examine each component of the system in more
detail.

3.1 Table Adapters
A key idea in data-driven customization is that a wide variety
of data sources can be mapped to a generic table abstraction.
In a relational database, the table matches the underlying
storage format, but in data-driven customization, the table
is merely an interface layer. The data shown in the table is a
projection of some underlying state, and edits to the table
can have complex effects on the underlying state.

3.1.1 Abstract Interface. We begin by describing the ab-
stract interface fulfilled by a table adapter.

Returning a table: A table adapter exposes a table of data:
an ordered list of records. Each record carries a unique identi-
fier and associates named attributes with values. Tables have
a typed schema, so the same attributes are shared across
all records. We currently support strings, numeric values,
booleans, and datetimes as types. The columns also carry
some additional metadata, such as whether or not they are
read-only or editable.
A table adapter can update the contents of a table at any

time in response to changes in the underlying state (e.g.,
a DOM scraping adapter can update the table when the
page body changes). When data changes, the query view is
reactively updated in response.
Handling edits: The query engine can issue a request to

a table adapter to make an edit to a record. The meaning of
making an edit can vary depending on the adapter: in the
local storage adapter, a new value may be persisted into local
storage; in the DOM scraping adapter, an edit may result in
changing the value of a form field.
In addition, the query engine also sends additional infor-

mation about the combined query view to each table adapter:
Sorting/filtering: When the user sorts or filters the query

view, an ordered list of visible IDs is sent to each table adapter.

The DOM scraping adapter uses this information to change
the list of rows shown in the web page.

Data from other tables: The query engine provides each ta-
ble adapter with the entire combined table shown to the user.
TheDOM scraping adapter uses this for injecting annotations—
values from other tables are added to the original web page.

Currently selected record: As the user clicks around the
table view, the query engine broadcasts the record currently
selected by the user to each table adapter. The DOM scraping
adapter uses this information to highlight the row in the page
that corresponds to the selected row in the table, which helps
the user understand the mapping between the table and the
original UI.
Next, we present the three types of table adapters we

have built in Wildcard so far. These do not represent an
exhaustive set of all possible table adapters—in Section 5 we
discuss other types of adapters that would fit well into the
general paradigm.

3.1.2 DOM Scraping Adapters. DOM scraping adapters
enable Wildcard to interface with an existing website UI. A
DOM scraping adapter fulfills the standard web scraping task
of extracting a table of data from the DOM, but it also acts in
the reverse direction: manipulating the DOM to reflect edits
to the table.
In Wildcard, DOM scraping adapters are programmed

manually for each website using Javascript code. It might
seem that this prohibits non-programmer users from using
the system at all, but we mitigate this problem with a shared
repository of adapters. Once an adapter is programmed for
a website, it is added to the shared repository, enabling any
end user to perform customizations on that website.

In the future, other strategies for producing DOM scraping
adapters could reduce this dependence on programmers: an
end user could specify the scraping logic via demonstration,
or the desired data table could be automatically inferred from
the page. While we are interested in these techniques and
discuss them in Section 5, we believe that a shared repository
of manually programmed adapters is a pragmatic starting
point; given that many users visit the same popular web-
sites,a critical mass of adapters could serve the needs of
many users.
To make it easier to create these adapters, Wildcard pro-

vides a framework that makes the process feel more like writ-
ing unidirectional scraping code than performing a complex
bidirectional synchronization. The key idea is this: program-
mers return pointers to DOM elements representing table
rows and table cells; Wildcard extracts data from these DOM
elements, but it also uses the pointers to synchronize table
edits back into the page. For example, when the user sorts
the table, the DOM elements representing the table rows are
moved around in the DOM to reflect the new sorted order.

Onward! ’20, November 18–20, 2020, Virtual, USA Geoffrey Litt, Daniel Jackson, Tyler Millis, and JessicaQuaye

const HNAdapter = createDomScrapingAdapter({
name: "Hacker News",

// Specify when the adapter should be enabled, based on current URL
enabled() {
return (
urlExact("news.ycombinator.com/") ||
urlContains("news.ycombinator.com/news") ||
urlContains("news.ycombinator.com/newest")

);
},

// Define the name and type of each column in the table
attributes: [
{ name: "id", type: "text", hidden: true },
{ name: "rank", type: "numeric" },
{ name: "title", type: "text" },
{ name: "link", type: "text" },
// ... other columns omitted for brevity

],

// Iterate over DOM elements, returning information about each row
scrapePage() {
return Array.from(document.querySelectorAll("tr.athing")).map((el) => {
let detailsRow = el.nextElementSibling;
let spacerRow = detailsRow.nextElementSibling;

return {
// Return a unique ID for each row
id: String(el.getAttribute("id")),

// Return DOM elements corresponding to this row
// (this enables moving/hiding the elements for sorting/filtering)
rowElements: [el, detailsRow, spacerRow],

// Return data for each column
dataValues: {
rank: el.querySelector("span.rank"),
title: el.querySelector("a.storylink"),
link: el.querySelector("a.storylink").getAttribute("href"),
// ... other columns omitted for brevity

},

// Specify where annotations should be injected, and what they should look like
annotationContainer: detailsRow.querySelector("td.subtext") as HTMLElement,
annotationTemplate: `| $annotation`,

};
});

},
});

Figure 4. Source code for the Hacker News scraper. Some details removed for brevity.

End-User Customization by Direct Manipulation of Tabular Data Onward! ’20, November 18–20, 2020, Virtual, USA

Figure 4 shows an example of the scraper code used for
the Hacker News example (with some code eliminated for
brevity.) It defines the following main components:

• enabled: defineswhen this adapter should run, usually
based on the active URL in the browser.1

• attributes: defines a schema for the table, with a
name and type for each column

• scrapePage: defines a scraping function which re-
turns an array of objects, each containing the data
for a single row of the table.

Here are some of the concerns that emerge when building
adapters in practice:
Choosing a row ID: When possible, it is best to choose a

server-side identifier that remains stable across pageloads.
This enables user annotations persisted in local storage to be
associated with the same records on subsequent pageloads.
We have found that it’s usually possible to find such an
identifier; for example, each item in a page often contains a
link to a page with more details, with a URL that contains a
stable ID.
Types of scraped values: For each individual value within

a row, there are two options for what type of data can be
returned by the programmer-specified scraping function.

The default option is to return a DOM element, in which
case the generic adapter extracts the text contents of the
DOM element and casts them to the type of the column. The
advantage of returning a DOM element is that the value is
editable—when the user changes the value in the table, the
generic adapter can simply overwrite the inner contents of
the DOM element.
Another option is to directly return a value, rather than

returning a DOM element. The advantage of this approach is
that the adapter author can perform arbitrary computations
to derive the returned value—for example, they can use a
regular expression to extract a substring. The disadvantage is
that the field is no longer writable. The computation used to
derive the value isn’t reversible, so there’s no way to reflect
a table edit in the DOM.

Optional overrides: In order to turn a unidirectional scrap-
ing function into a bidirectional scraping adapter, there are
a number of behaviors that must be specified:

• when should the scraping function be re-run in re-
sponse to changes on the page?

• how should injected annotations appear in table rows?
• when the user selects a row in the table, how should
the corresponding row in the DOM be highlighted?

The scraping framework defines sensible defaults that
work well on many sites, but the programmer can option-
ally override them to provide better site-specific behavior.
1Currently Wildcard can only show a single table at a time, so if multiple
adapters are enabled for a single page, we arbitrarily pick one. It would be
a straightforward extension to allow the user to switch between multiple
possible tables available on the page.

For example, the Hacker News adapter specifies annotation
options that make user annotations appear more naturally
in the design of the original webpage.

3.1.3 AJAXScrapingAdapters. AnAJAX scraping adapter
intercepts AJAX requests made by a web page, and extracts
information from those requests to add to the table. When
available, this tends to be a helpful technique because the
data is already in a structured form so it is easier to scrape,
and it often includes valuable information not shown in the
UI.

As with DOM scraping adapters, we have made it easy for
programmers to create site-specific AJAX scraping adapters.
A programmer writes a function that specifies how to extract
data from an AJAX request, and the framework handles the
details of intercepting requests and calling the programmer-
defined function.2

In order to join the tables produced by AJAX scraping and
DOM scraping, a common set of identifiers is required across
records in the two tables. Often there is a server-defined ID
present both in the DOM and in AJAX responses; if not, the
programmer can use some set of overlapping data (e.g. an
item name) as a shared ID.

3.1.4 Local Storage Adapters. The local storage adapter
simply stores a table of data in the browser. This is currently
only used to persist annotations.

The table view is initialized with empty columns such as
user1 which serve as the user’s “scratch space,” as shown
in Section 2. When the user makes edits to these columns,
new rows are created in the local storage table. The rows
contain the record ID from the DOM scraping adapter, which
enables them to be re-associated with the same records on
subsequent pageloads.

3.2 Query Engine
The query engine is responsible for coordinating across
multiple table adapters. It joins data across multiple tables
and creates a single result table which is shown to the user
through the editor. It also handles all user interactions and
routes appropriate messages to each table adapter.
Queries are processed in three steps. First, the query in-

vokes a primary DOM scraping adapter that associates table
rows with elements in the application’s user interface. Next,
additional tables (AJAX data, local storage data) are left-
joined by ID. Finally, the result table is sorted and filtered
according to user-specified predicates.
One way to view this query model is as a tiny subset of

the SQL query model. Despite its simplicity, this model has
proven sufficient for meeting our customization needs, and
minimizes the complexity of supporting arbitrary queries.
2So far we have only implemented AJAX scraping in the Firefox version
of Wildcard, since Firefox has convenient APIs for intercepting requests. It
appears possible to implement in Chrome and Edge as well, but we have
not finished our implementation.

Onward! ’20, November 18–20, 2020, Virtual, USA Geoffrey Litt, Daniel Jackson, Tyler Millis, and JessicaQuaye

But because it fits into the general paradigm of relational
queries, it could theoretically be extended to support a wider
range of queries.

The query engine is also responsible for executing formu-
las. We have built a small formula language resembling a
spreadsheet formula language. As in visual database query
tools like SIEUFERD [3] and Airtable, formulas automati-
cally apply across an entire column of data, and reference
other column names instead of values in specific rows. This
is more convenient than needing to copy-paste a formula
across an entire column as in spreadsheets, and has worked
for all of the customizations we have built.

3.3 Table Editor
We provide a table editor view as the user interface on top
of the query engine. Our table editor is built with the Hand-
sontable Javascript library, which provides built-in UI ele-
ments for viewing, editing, sorting, and filtering a table.
In addition to the basic table editing operations, we also

provide cell editors: UI widgets that expose a custom editing
UI for a single cell of the table view. A programmer building
a cell editor need only integrate it with the table viewer;
propagating values into the website UI is handled by the
site-specific DOM adapter. In Section 4 we provide some
examples of using cell editors.
The table editor only serves as a shallow interface layer

over the query engine, relaying user commands to the query
engine and rendering the resulting data table. Because of this
architectural split, it would be straightforward to develop
additional table editor interfaces on top of the Wildcard
system. For example, we could provide a calendar view for
displaying a table containing a date column.

4 Reflections on Usage
To evaluate data-driven customization in practice, we built
the Wildcard browser extension, which implements data-
driven customization in the context of existing websites. It
is implemented in Typescript, and works across three major
browsers: Chrome, Firefox, and Edge.
We developed site-specific adapters for 11 websites that

we personally use frequently, and then built customizations
for those websites using theWildcard table view. Table 1 sum-
marizes these results, showing the number of lines of code
in the adapter for each site, and some example customiza-
tions we created. Here we offer our reflections from these
experiences using the system, focused on two key questions:

• How broad is the range of possible customizations in
this paradigm?

• How feasible is it to build DOM scraping adapters for
real websites?

Figure 5. Sorting the used sellers page on Amazon by total
price, including fees. The original page doesn’t have sorting,
and doesn’t show the combined price.

4.1 Range of Customizations
We have found that data-driven customization can serve a
broad range of useful purposes. Here we expand on some
archetypal examples that illuminate aspects of using the
system in practice.

4.1.1 Sorting and Filtering. It might seem thatmost web-
sites already have adequate sorting and filtering function-
ality, but we have found it surprisingly helpful to add new
sorting/filtering functionality to websites using Wildcard.
Sometimes, websites have opaque ranking algorithms

which presumably maximize profit but restrict user agency.
For example, Airbnb previously allowed users to sort listings
by price, but removed that feature in 2012. In other cases, a
lack of sorting options seems more like an innocent omis-
sion; for example, the Instacart grocery delivery service has
a spartan UI for viewing an order, which doesn’t allow for
sorting items by price or category. In both of these cases,
Wildcard enables users to take back some control.

In the current implementation of Wildcard, users can only
sort and filter entries that are shown on the current page,
which means that users are not entirely liberated from the
site’s original ranking. This restriction could be overcome in
the future by scraping content across multiple pages, or by
using an integrated adapter and avoiding scraping altogether.
However, we’ve also realized that sorting/filtering a single
page of a paginated list is sometimes an acceptable outcome
(and even a preferable one). It’s more useful, for example, to
sort 30 recommended Youtube videos than to try to sort all
videos on Youtube.

4.1.2 Annotating. Many web annotation systems focus
on annotating text or arbitrary webpage content, but Wild-
card limits annotations to structured objects extracted by an

https://airtable.com/

End-User Customization by Direct Manipulation of Tabular Data Onward! ’20, November 18–20, 2020, Virtual, USA

Table 1. A list of data-driven customizations that we have implemented using Wildcard.

Website Description LOC Example customizations
Airbnb Travel 73 Add Walkability Scores to listings. Sort listings by price.
Amazon Online shopping 99 Sort third party sellers by total price, including fees.
Blogger Blogging 36 Use alternate text editor to edit blog posts.
Expedia Travel 41 Use alternate datepicker to enter travel dates.
Flux Data portal 67 Use Wildcard as a faster table editor for editing lab results.
Github Code repository 62 Sort a user’s code repositories by stars to find popular work.
Hacker News News 69 Add read times to links. Filter out links that have been read.
Instacart Grocery delivery 48 Sort groceries by price and category. Take notes on items.
Uber Eats Food delivery 117 Sort/filter restaurants by estimated delivery ETA and price.
Weather.com Weather 51 Sort/filter hourly weather to find nice times of day.
Youtube Videos 80 Sort/filter videos by length, to find short videos to watch.

Figure 6. Organizing takeout restaurants on Uber Eats by
delivery ETA and price

adapter, resulting in a different set of use cases. Annotating
with Wildcard has proven most useful when taking notes on
a list of possible options (e.g., evaluating possible Airbnb lo-
cations to rent). We have also used it with Instacart’s online
grocery cart, for jotting down notes as we review an order
and consider modifications (shown in Figure 7).

4.1.3 Formulas. Formulas are the most powerful part of
the Wildcard system. So far, our language supports only a
small number of predefined functions. Adding more should
allow a broad range of useful computations, as shown by the
success of spreadsheets.

Formulas are especially useful for fetching data from Web
APIs. We’ve used them to augment Airbnb listings with walk-
ability scores, and to augment Hacker News articles with
estimated read times as shown in Section 2. One challenge
of the current language design is that supporting a new web
API requires writing Javascript code to add a new function
to the language, because web APIs typically return complex
JSON data structures that can’t be easily displayed in a single
table cell. In the future we would like to make it possible to
call new APIs without adding a dedicated function, which

Figure 7. Taking notes on Instacart grocery items, after
sorting them by price

might require adding functions to the formula language that
can manipulate JSON data.

We have also found instances where simple data manipu-
lation is useful, e.g. transforming the results of an API call
with basic arithmetic and string operations, as shown in
Section 2.

4.1.4 Cell editors. We developed two cell editors: custom
UI widgets for editing values in the table.
One benefit that cell editors provide is enabling users to

incorporate their private information into a web UI. We cre-
ated a datepicker widget (based on the FullCalendar plugin),
which can load calendar data from a Google Calendar. This
makes it convenient to enter dates into a website based on
the user’s personal calendar information, without needing
to upload a user’s calendar to the website itself.

Another benefit is that a user can choose a single preferred
widget for editing a certain type of information across dif-
ferent sites. For example, a user could use their favorite rich
text editor to edit text in various websites like blogging plat-
forms and task trackers. To demonstrate this capability, we

https://fullcalendar.io/

Onward! ’20, November 18–20, 2020, Virtual, USA Geoffrey Litt, Daniel Jackson, Tyler Millis, and JessicaQuaye

Figure 8. Using a custom text editor widget to edit a blog
post on Blogger. The text is synchronized with the Blogger
editor through a table cell.

built a text editor based on the CKEditor rich text editor. We
used the editor with Google’s Blogger website, by building
a site adapter that represented the contents of a blog post
as a single table cell containing an HTML string (shown in
Figure 8).

4.1.5 Limitations. There are many customizations that
are not possible to implement with data-driven customiza-
tion. Some of the limitations are specific to the current im-
plementation of the Wildcard extension, but others are more
fundamental to the general paradigm.

One limitation is that Wildcard can only make customiza-
tions that use the available data exposed in the table. If the
adapter doesn’t expose some piece of data, the user can’t use
it in their customization. The table data format also rules out
customizing certain sites that don’t have a way to map to
a table. The UI modifications available in Wildcard are also
limited in scope; deleting arbitrary buttons isn’t possible,
for example. There is no facility for running automations
when the user isn’t actively viewing a page—at one point, we
wanted to build an automation to repeatedly load a grocery
delivery website to check for open delivery slots, but it didn’t
seem possible to achieve this in Wildcard. We consider these
limitations acceptable, since our goal is to support as many
useful customizations as possible with a low threshold of
difficulty, and not to span all possible customizations.
We have found that one benefit of showing structured

data is predictability: once we build an adapter for a website,
it is clear what data is available or unavailable for use in
customizations. Also, there is sometimes a way to reframe
an imperative script in terms of our direct manipulation
model. For example, a script that iterates through rows in a
page adding some additional information to each row can
be reproduced using a single formula in Wildcard.

4.2 Viability of Scraping
Separately from the range of customizations, we also eval-
uated the feasibility of building DOM scraping adapters in
practice. In order for third-party customization throughWild-
card to succeed, it is important that creating adapters for
existing websites takes minimal effort.

Nearly all of our DOM scraping adapters were created by
members of our team. However, an external developer unaf-
filiated with the project contributed one adapter, designed
to sort the Github page listing a user’s repositories, and they
described the experience as “very straightforward.”

The adapters for our test sites ranged from 36 to 117 lines
of code, averaging 68 lines; Table 1 shows the number of lines
of code for each adapter. Most of the code in the adapters
is simply using DOM APIs and CSS selectors to implement
conventional web scraping logic.

Some of the challenges of writing a DOM scraping adapter
are the same ones as with writing normal web scraping code.
Sometimes, addressing the desired set of elements can be diffi-
cult, and when sites change, scrapers can break; we observed
several instances where sites changed their CSS classes and
caused Wildcard adapters to no longer work. One benefit of
a library of shared wrappers is that if many customizations
depend on some piece of scraping logic, rather than having
the scraping logic embedded in a single browser extension,
it should be more likely to be fixed quickly.
The interactive nature of Wildcard also introduces addi-

tional challenges beyond normal web scraping. One chal-
lenge is registering appropriate event handlers to update
the table data in response to UI changes that happen after
initial page load. Another challenge is persisting updates to
the DOM—some websites use virtual DOM frameworks that
can occasionally overwrite changes made by Wildcard. So
far, in practice we’ve managed to work around these issues
for all of the websites we’ve tried, but we don’t claim that
any website can be customized through DOM scraping. As
web frontend code gets increasingly complex (and starts to
move beyond the DOM to other technologies like Shadow
DOM or even WebGL), it may become increasingly difficult
to customize websites from the outside without first-party
support.
AJAX scraping proved very useful in several cases. The

Uber Eats website was challenging to scrape because it has a
complexDOM structurewithmachine-generated CSS classes,
but the site also uses AJAX requests which contain all the
relevant data in a structured form that is much easier to
extract. We also found examples where relevant information
wasn’t present in the DOM at all. On the grocery delivery
site Instacart, we found that AJAX requests contained use-
ful information not shown in the UI, like the category and
barcode ID of an item.

https://ckeditor.com/

End-User Customization by Direct Manipulation of Tabular Data Onward! ’20, November 18–20, 2020, Virtual, USA

5 Vision
We envision data-driven customization as a broad paradigm
that could extendwell beyond theWildcard proof-of-concept,
and ultimately result in new software architectures that em-
power end users to mold software to their specific needs.
Here we explore some of the deeper ideas underlying our
work, and future possibilities beyond the Wildcard tool.

5.1 Decoupling Data from Applications
When data is freely available outside the context of a specific
application, users have more freedom to choose a suitable
application for their needs. For example, an RSS feed can
be consumed by many reader applications—a journalist can
use a power tool optimized for skimming hundreds of news
sources a day, while a casual reader can use a simple app to
keep up with a few blogs. Motivated users can even create
their own custom workflows for filtering and combining RSS
feeds, either via traditional programming or in an end-user
programming environment like Yahoo Pipes.

However, on the Web today, data is often siloed and only
accessible through a single prescribed application. A Face-
book feed can only be viewed through the Facebook ap-
plication. Podcasts, originally served openly through RSS,
are beginning to become exclusive to specific platforms like
Spotify. This coupling between data and applications leaves
users at the mercy of using a single client optimized for spe-
cific purposes (e.g., maximizing engagement) that may not
be aligned with users’ individual desires.
Some services provide APIs that mitigate these siloing

effects, but APIs fail to provide a full solution to the problem.
First, APIs often provide limited access, especially when an
open client ecosystem would harm the economic incentives
of a web service built on advertising in a first-party client—
in 2012, Twitter infamously imposed restrictions on third-
party applications that mimicked the “mainstream Twitter
consumer client experience.” A second problem is that web
APIs have a high barrier to entry—they tend to be designed
more for programmers creating entire applications or heavy-
duty automations than for end users casually modifying their
own experience.

There have been compelling suggestions for more decen-
tralized architectures that would give users more control of
their data. Local-first software [15] suggests that productiv-
ity applications should run logic and store data locally, while
retaining the benefits of realtime collaboration through peer-
to-peer synchronization. The SOLID project [6] envisions
a decentralized future where users store data on their own
servers, and choose to grant limited access to applications.
We see data-driven customization as aligned with these de-
centralized visions, but complementary to them in two ways.

Incrementality: Rather than proposing that web services
be totally rearchitected, data-driven customization suggests

a more incremental path for adding user agency to existing
software.

Data-driven customization allows for lightly augmenting
a centralized website with decentralized data storage. Sec-
tion 2 demonstrated how a user’s private annotations on a
news site could be stored in their browser, without needing
to upload the annotation to the website’s server. A hybrid
storage model is reasonable here: a centralized storage model
makes sense for most of the information on Hacker News
that is viewed by all users, but a user’s private annotations
can easily just be stored in their browser. This model could
even be extended with peer-to-peer sharing—a column in
a Wildcard table could be shared directly among friends,
providing shared annotation of a common website without
needing to use the website itself as a centralized intermedi-
ary.

By using third-party data extraction, data-driven customiza-
tion also works with existing websites that do not expose
structured data to the user. Ultimately, in adversarial situ-
ations where websites are strongly incentivized to restrict
access to their data, scraping is unlikely to be a sustainable
solution. But we hypothesize that there are many more situ-
ations where websites are neutral: not opposed to the idea of
end user customization, but also not sufficiently motivated
to create and maintain a public API. We see these neutral
situations as a context where this kind of incremental ap-
proach could succeed. Perhaps some of these websites might
be more motivated to provide official extension hooks if
they saw the value that users were getting from unofficial
community-provided ones.

Focus on end user customization:Having access to the
data is a necessary but not sufficient condition for empower-
ing end users to craft their own software experience. Another
key ingredient is providing usable tools and interfaces for
working with the data.

In data-driven customization, we focus heavily on this
part of the solution. By showing raw data in the context of
a user interface and allowing small tweaks to the original
application’s behavior, we provide a smooth path for people
to move from using an application to tweaking it.
In this sense, data-driven customization is a complemen-

tary approach to other projects that focus on getting users
greater access to their data. In a decentralized future where
data is stored locally rather than in cloud silos, interfaces
like Wildcard would be one technique for actually making
use of this data in service of greater end user flexibility.

5.2 Customization by Direct Manipulation
Hutchins, Hollan and Norman [13] define a direct manipu-
lation interface as one that uses a model-world metaphor
rather than a conversation metaphor. Instead of presenting
an “assumed” but not directly visible world that the user con-
verses with, “the world is explicitly represented” and the user
can “[act] upon the objects of the task domain themselves.”

https://en.wikipedia.org/wiki/Yahoo!_Pipes
https://stratechery.com/2019/spotifys-podcast-aggregation-play/
https://www.theverge.com/2012/8/16/3248079/twitter-limits-app-developers-control

Onward! ’20, November 18–20, 2020, Virtual, USA Geoffrey Litt, Daniel Jackson, Tyler Millis, and JessicaQuaye

Although most GUIs today employ direct manipulation,
software customization tools typically use an imperative
programming model, which implements the conversational
metaphor rather than direct manipulation. Here, for exam-
ple, is how a user retrieves a list of of calendar names from
the Calendar application in Applescript [10], the scripting
language for customizing Mac OS applications:

tell application "Calendar"
name of calendars

end tell

Some customization environments like Mac Automator
and Zapier forego textual syntax and let the user connect
programs and construct automations by dragging and drop-
ping icons representing commands. These environments still
do not constitute direct manipulation, though: the objects
being manipulated are in the domain of programming, not
in the domain of the task at hand.
Imperative programming is a reasonable choice as the

model for building customizations. Turing-complete pro-
gramming provides a high ceiling for possible customiza-
tions, and a sequence of commands is a natural fit for automa-
tions that simulate a series of steps taken by the user. There
is, however, a serious drawback to this approach. MacLean
et al. [19] describe an ideal for user-tailorable systems: a
“gentle slope” from using to customizing, where small incre-
mental increases in skill lead to corresponding increments
of customization power. Requiring users wanting to cus-
tomize their applications to learn programming creates an
abrupt “cliff,” exacting a significant investment in learning
even to implement the simplest customizations. Another
goal of MacLean et al. is to make it “as easy to change the
environment as it is to use it”—at least for some subset of
changes. But in scripting languages, the experience of cus-
tomization does not remotely resemble the experience of
use.

With data-driven customization we aim to provide a gen-
tler slope, by using direct manipulation for software cus-
tomization. The data shown in the table view is the do-
main data from the original application. The user makes
changes to the data by selecting areas of interest in the ta-
ble, e.g. sorting/filtering by clicking the relevant column
header, or adding annotations by clicking and typing on the
relevant row. At every step, the user receives intermediate
feedback, not only in the table view, but also in the original
application, so it’s clear whether they are making progress
towards their desired result. These types of interactions are
common in GUI applications, and Wildcard therefore seems
to meet MacLean et al.’s goal: some one-click customizations
are as easy as using the original application. Formulas in-
troduce some additional complexity, but spreadsheets have
demonstrated that formula programming is still accessible
to many users, helped by the pure functional semantics and
the visibility of intermediate results.

One aspect of directness that we have chosen not to pursue
in Wildcard is enabling customization in closer proximity
to the original user interface elements, as explored by other
tools like Scotty [11]. While closer proximity might be help-
ful, we have found that augmenting the original UI with a
distinct, additional representation provides a more consistent
experience across all applications, and clearly shows what
structured data is available to work with. We also emphasize
the mapping between the representations by highlighting
content in the original page, similiar to the way that browser
developer tools highlight the currently selected element in
the DOM inspector in the original page.

Ainsworth et al. provide a helpful taxonomy of the value of
multiple representations [1]. In their terms, Wildcard plays a
complementary role by supporting a different set of tasks from
the original application, while displaying shared information.
Wildcard may also help construct deeper understanding by
subtraction: by stripping away details and only showing the
essential data in an interface, Wildcard encourages thinking
of an application in terms of its core information, rather
than the specific capabilities provided by the current user
interface. In our experience, we’ve often found that looking
at a site’s data in table format tends to spur new ideas for
customizations which weren’t evident from looking at the
original UI.

5.3 Semantic Wrappers
Ad hoc customization tools enable customization without
using official extension APIs, enabling a broader range of
customizations on top of more applications. For example,
web browser extensions have demonstrated the utility of cus-
tomizing websites through manipulating the DOM, without
websites needing to provide explicit extension APIs. How-
ever, ad hoc customization comes with a cost: these tools
typically operate at a low level of abstraction, e.g. manipu-
lating user interface elements, rather than in a meaningful
domain model. This makes it harder for end users to write
scripts, and makes the resulting scripts more brittle as the
specifics of a user interface change.
Anticipated customization tools, in contrast, use explicit

extension APIs provided by the application developer. Exam-
ples of this include accessing a backend web API, or writing a
customization in Applescript for an application that exposes
its domain model to the scripting language. The main benefit
of this style is that it allows the extension author to work
with meaningful concepts in the application domain—“create
a new calendar event” rather than “click the button that con-
tains the text ‘new event’ ”—which makes customizations
easier to build and more robust. However, the plugin API
limits the types of customizations that can be built, and many
applications don’t have any plugin API.
With Wildcard, we use a hybrid approach that aims to

provide the best of both worlds. Third-party programmers

End-User Customization by Direct Manipulation of Tabular Data Onward! ’20, November 18–20, 2020, Virtual, USA

implement site-specific adapters that are internally imple-
mented as ad hoc customizations, but externally provide
a high-level interface to the application, abstracting away
the details of the user interface. These wrappers are added
to a shared repository, available to all users of the system.
When an end user is using a site that already has an adapter,
they benefit from a semantic customization experience that
avoids low-level details.
One way to view this approach is as introducing a new

abstraction barrier into third-party extension. Typically, a
third-party customization script combines two responsibili-
ties: 1) mapping the low-level details of a user interface to
semantic constructs (e.g., using CSS selectors to find certain
page elements), and 2) handling the actual logic of the spe-
cific customization. Even though the mapping logic is often
more generic than the specific customization, the intertwin-
ing of these two responsibilities in a single script makes it
very difficult to share the mapping logic across scripts.

With Wildcard we propose a decoupling of these two lay-
ers: a repository of shared wrappers maintained by program-
mers, and a separate repository of specific customizations
built on top of these wrappers. This general architecture has
been successfully demonstrated by projects like Gmail.js, an
open source project that wraps the Gmail web client in a
convenient API for browser extensions to build on.
The success of semantic wrappers depends on a key hy-

pothesis: that a single wrapper created by a programmer can
be used for many different purposes by end users. Although
we’ve validated that a single generic adapter can support
many customizations, so far the people making the adapters
have largely been the same people building customizations
on top of them, so more work is needed to fully test this
hypothesis.

The distribution mechanism for semantic wrappers is also
important for encouraging an ecosystem of shared wrappers.
Currently, the distribution mechanism is simply merging the
code for all adapters into the main Wildcard codebase. This
is a simple solution, but makes it fairly difficult to contribute
new wrappers and requires installing a new version of the
extension to gain access to new warppers. In the future we
might explore other mechanisms, like an online repository
that the extension pulls from dynamically. Security is also
a consideration—DOM scraping adapters can execute arbi-
trary Javascript code, which means a malicious adapter could
exfiltrate sensitive information from a page. Approaches to
security could include centralized code review, using a re-
stricted scraping DSL, or creating a sandboxed context for
scrapers without access to networking APIs.

5.3.1 AlternateMechanisms forWrapperCreation. Re-
quiring programming to create wrappers has an obvious
limitation. If an end user wants to customize a site and no
programmer has contributed a wrapper for that site, then
they have nomeans of customizing it. Although a sufficiently

vibrant community of programmers could produce wrappers
for many popular sites, it’s unrealistic to imagine covering
all websites that end users might want to customize. We
envision two strategies for dealing with this problem:

End user wrapper creation: If end users could create
wrappers without programming, they could customize any
website, as long as it worked with the wrapper creation
process. We could try integrating techniques from projects
like Helena [9] which enable end users to scrape websites
by demonstration. Another intriguing possibility we plan
to explore in the future is blurring the boundaries between
scraping and customizing by using spreadsheet formulas as
a means of guiding the scraping process.

First-party wrapper creation: An integrated adapter
installed by the developer of an application could directly
access internal state, providing the same functionality as a
DOM scraping adapter but in a more robust way.
With the advent of rich frontend web frameworks, struc-

tured application state is now often available in the web
client. We suspect it is possible to create plugins for frontend
frameworks that expose this state to Wildcard with only
minimal effort from the application developers. This kind of
plugin would allow developers to integrate with an ecosys-
tem of formulas and customization tools without needing to
build that functionality from scratch.

6 Related Work
This paper extends work reported in our workshop paper
that presented an early version of the Wildcard extension
[18] . We have substantially extended that work by creating
the table adapter abstraction, reimplementing the internals
of Wildcard around that abstraction, evaluating the system
on many more websites and use cases, and by characterizing
the design of the system in more detail.
Data-driven customization relates to two broad areas of

related work. Our problem statement is related to software
customization tools, and our solution approach is related to
spreadsheets and other direct manipulation interfaces.

6.1 Customization Tools
Data-driven customization is most closely related to other
tools that aim to empower end users to customize software
without traditional coding.

This lineage goes back at least to the Buttons system by
MacLean et al. [19], where Xerox Lisp users could share but-
tons that performed various “tailoring” actions on the sys-
tem. The authors proposed the “gentle slope” idea which has
greatly influenced our approach to data-driven customiza-
tion (as discussed in Section 5.2). The authors also point out
the importance of a “tailoring culture” where people with
different skillsets collaborate to produce useful customiza-
tions; in their system, Lisp programmers create buttons that

https://github.com/KartikTalwar/gmail.js/

Onward! ’20, November 18–20, 2020, Virtual, USA Geoffrey Litt, Daniel Jackson, Tyler Millis, and JessicaQuaye

others can use, modify, and rearrange. This division of la-
bor corresponds to our idea of semantic wrappers, where
end user customization is supported by programmer-created
building blocks.

More recently, Tchernavskij introduced the notion of mal-
leable software, which aims to allow users to tailor their
software by pulling apart and recombining individual user in-
terface elements [22]. This work builds on prior work on cus-
tomizing graphical interfaces, including Beaudouin-Lafon’s
idea of instrumental interaction [4] and Klokmose et al.’s
customizable Webstrates environment [16]. Data-driven cus-
tomization shares the overall goals of this line of work, and
proposes new interaction techniques for achieving them. In
particular, by showing users a structured data representation
and allowing them to perform lightweight programming
through formulas, our approach supports customizations
of intermediate complexity: more sophisticated than those
that can be achieved merely by manipulating existing inter-
face elements, but simple enough to not require full-blown
programming.
Other web customization tools have also aimed to en-

able end users to modify web interfaces without program-
ming. Sifter [14] enables end users to sort and filter lists of
data obtained by web scraping, much like Wildcard’s sorting
features. The main difference between the systems is that
data-driven customization has many other use cases besides
sorting and filtering. Also, Sifter involves end users in a
semi-automated data extraction process, rather than having
programmers create wrappers. This provides coverage of
more websites, but at the expense of complicating the end
user experience. We might integrate end user scraping tech-
niques in Wildcard in the future, but we believe that, when
possible, it is valuable for end users to have a customiza-
tion experience decoupled from the challenge of scraping
the underlying data. Sifter also implements scraping across
multiple pages, a valuable feature for sorting and filtering
that isn’t present in Wildcard.
Thresher [12] helps end users create wrappers that map

website content to Semantic Web schemas like “Movie” or
“Director,” and augments websites with new functionality by
exploiting that schema information. Wildcard shares the gen-
eral idea of wrappers, but maps to a generic table data type
rather than more specific schemas, increasing the range of
supported data and allowing for a simpler mapping process.
There are many software customization tools that offer

simplified forms of programming for end users. Chickenfoot
[7] and Coscripter [17] offer user friendly syntax for writing
web automation scripts; Applescript [10] has a similar goal
for desktop customization. There are visual programming en-
vironments for customization that don’t involve writing any
text: Automator for Mac and Shortcuts for iOS are modern
options for customizing Apple products, and Zapier enables
users to connect different web applications together visually.

As mentioned previously, these tools all require writing im-
perative programs, in contrast to the more declarative and
direct approach of data-driven customization.

6.2 Spreadsheets and Visual Query Interfaces
Another relevant area involves spreadsheets and visual query
interfaces. We take inspiration from these tools in our work,
but apply them in a different domain: customizing existing
software applications, rather than interacting with databases
or constructing software from scratch.
The most closely related work is in systems that offer

spreadsheet-like querying of relational data. SIEUFERD by
Bakke and Karger [3] is one such recent system, and their
paper presents a survey of many other similar tools. Our
work is particularly influenced by the authors’ observation
that a user should be able to modify queries by interacting
with the results of the query rather than some representa-
tion of the query itself. SIEUFERD’s interface supports a far
more general range of queries than Wildcard, but the core
principles of the user interface are the same. Airtable is an-
other example of a modern commercial product that offers
spreadsheet-like interaction with a relational database.

Our work is also inspired by the many projects that have
explored using spreadsheets as a foundation for building
software applications, including Object Spreadsheets [20],
Quilt [5], Gneiss [8], Marmite [23], and Glide. We share the
main idea of connecting a spreadsheet view to a GUI, but
we apply it to software customization, rather than building
software from scratch.
Another related system is ScrAPIr, by Alrashed et al. [2],

which enables end users to access backend web APIs without
programming. ScrAPIr shares our high level goal of end user
empowerment, as well as the idea of wrappers, by creating a
shared library of wrappers around existing web APIs. Unlike
Wildcard, however, ScrAPIr targets explicit APIs exposed by
developers. It also focuses on backend services and doesn’t
aim to extend the frontend interfaces of web applications.

7 Conclusion and Future Work
A primary goal for future work is to evaluate the systemwith
more users. What usability barriers do people face? What
types of customizations do they choose to create? What
formulas prove most helpful? We hope to answer these ques-
tions through real deployment of the tool.
Another future goal is to better characterize the limits

of the table-editing paradigm. Are there ways to offer an
increase in power and functional complexity, while retaining
a programming model that is simpler for end users than
conventional coding? For example, we could enable users to
set up triggers to perform actions like sending notifications
when certain conditions are met in the table view.

Finally, more broadly, data-driven customization suggests
new possibilities for how multiple applications might be

https://support.apple.com/guide/automator/welcome/mac
https://apps.apple.com/us/app/shortcuts/id915249334
https://zapier.com/
https://airtable.com/
https://www.glideapps.com/

End-User Customization by Direct Manipulation of Tabular Data Onward! ’20, November 18–20, 2020, Virtual, USA

integrated in new ways, by synchronizing their underlying
data representations in a shared format. So far, this work has
mostly explored the implications for customization within
a single application, but it would be interesting to explore
how end users could use these techniques to synchronize
data across applications to avoid manual coordination work.

As computing plays an ever greater role in people’s lives,
it is increasingly important that users have agency over the
behavior of their software, rather than having every detail
be dictated by companies whose interests are not always
aligned with their own. Data-driven customization, we hope,
is a step on the path from normal use to deep modification,
in support of a more adaptable experience for all users.

Acknowledgments
Thank you to TarfahAlrashed, Glen Chiacchieri, David Karger,
Steve Krouse, Rob Miller, Santiago Perez De Rosso, Arvind
Satyanarayan, Daniel Windham, and Maggie Yellen, who all
provided helpful feedback on this work. We also thank our
anonymous reviewers, whose insightful comments greatly
improved this paper.
This research was funded in part by the International

Design Center, a collaboration between MIT and SUTD (the
Singapore University of Technology and Design), and by
the Secure and Trustworthy Cyberspace (SaTC) program of
the CISE division of the National Science Foundation under
Award Number 1801399.

References
[1] Shaaron Ainsworth. 1999. The Functions of Multiple Representations.

Computers & Education 33, 2-3 (Sept. 1999), 131–152. https://doi.org/
10.1016/S0360-1315(99)00029-9

[2] Tarfah Alrashed, Jumana Almahmoud, Amy X. Zhang, and David R.
Karger. 2020. ScrAPIr: Making Web Data APIs Accessible to End
Users. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems (CHI ’20). Association for Computing Machinery,
Honolulu, HI, USA, 1–12. https://doi.org/10.1145/3313831.3376691

[3] Eirik Bakke and David R. Karger. 2016. Expressive Query Construction
through Direct Manipulation of Nested Relational Results. In Proceed-
ings of the 2016 International Conference on Management of Data -
SIGMOD ’16. ACM Press, San Francisco, California, USA, 1377–1392.
https://doi.org/10.1145/2882903.2915210

[4] Michel Beaudouin-Lafon. 2000. Instrumental Interaction: An In-
teraction Model for Designing Post-WIMP User Interfaces. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems (CHI ’00). ACM, New York, NY, USA, 446–453. https:
//doi.org/10.1145/332040.332473

[5] Edward Benson, Amy X. Zhang, and David R. Karger. 2014. Spread-
sheet Driven Web Applications. In Proceedings of the 27th Annual
ACM Symposium on User Interface Software and Technology - UIST ’14.
ACM Press, Honolulu, Hawaii, USA, 97–106. https://doi.org/10.1145/
2642918.2647387

[6] Tim Berners-Lee. 2019. One Small Step for the Web. . . .
https://medium.com/@timberners_lee/one-small-step-for-the-
web-87f92217d085.

[7] Michael Bolin, MatthewWebber, Philip Rha, TomWilson, and Robert C.
Miller. 2005. Automation and Customization of Rendered Web Pages.
In Proceedings of the 18th Annual ACM Symposium on User Interface

Software and Technology - UIST ’05. ACM Press, Seattle, WA, USA, 163.
https://doi.org/10.1145/1095034.1095062

[8] Kerry Shih-Ping Chang and Brad A. Myers. 2014. Creating Interactive
Web Data Applications with Spreadsheets. In Proceedings of the 27th
Annual ACM Symposium on User Interface Software and Technology -
UIST ’14. ACM Press, Honolulu, Hawaii, USA, 87–96. https://doi.org/
10.1145/2642918.2647371

[9] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon:
Scraping Distributed Hierarchical Web Data. In The 31st Annual ACM
Symposium on User Interface Software and Technology - UIST ’18. ACM
Press, Berlin, Germany, 963–975. https://doi.org/10.1145/3242587.
3242661

[10] William R. Cook. 2007. AppleScript. In Proceedings of the Third ACM
SIGPLAN Conference on History of Programming Languages - HOPL III.
ACM Press, San Diego, California, 1–1–1–21. https://doi.org/10.1145/
1238844.1238845

[11] James R. Eagan, Michel Beaudouin-Lafon, and Wendy E. Mackay. 2011.
Cracking the Cocoa Nut: User Interface Programming at Runtime. In
Proceedings of the 24th Annual ACM Symposium on User Interface Soft-
ware and Technology - UIST ’11. ACM Press, Santa Barbara, California,
USA, 225. https://doi.org/10.1145/2047196.2047226

[12] Andrew Hogue and David Karger. 2005. Thresher: Automating the Un-
wrapping of Semantic Content from the World Wide Web. In Proceed-
ings of the 14th International Conference onWorldWideWeb -WWW ’05.
ACM Press, Chiba, Japan, 86. https://doi.org/10.1145/1060745.1060762

[13] Edwin L Hutchins, James D Hollan, and Donald A Norman. 1985.
Direct Manipulation Interfaces. (1985), 28.

[14] David F. Huynh, Robert C. Miller, and David R. Karger. 2006. Enabling
Web Browsers to Augment Web Sites’ Filtering and Sorting Function-
alities. In Proceedings of the 19th Annual ACM Symposium on User
Interface Software and Technology - UIST ’06. ACM Press, Montreux,
Switzerland, 125. https://doi.org/10.1145/1166253.1166274

[15] Martin Kleppmann, Adam Wiggins, Peter van Hardenberg, and Mark
McGranaghan. 2019. Local-First Software: You Own Your Data, in
Spite of the Cloud. In Proceedings of the 2019 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software - Onward! 2019. ACM Press, Athens, Greece,
154–178. https://doi.org/10.1145/3359591.3359737

[16] Clemens N. Klokmose, James R. Eagan, Siemen Baader, WendyMackay,
and Michel Beaudouin-Lafon. 2015. Webstrates: Shareable Dynamic
Media. In Proceedings of the 28th Annual ACM Symposium on User Inter-
face Software & Technology - UIST ’15. ACM Press, Daegu, Kyungpook,
Republic of Korea, 280–290. https://doi.org/10.1145/2807442.2807446

[17] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. 2008.
CoScripter: Automating & Sharing How-to Knowledge in the Enter-
prise. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’08). ACM, New York, NY, USA, 1719–1728.
https://doi.org/10.1145/1357054.1357323

[18] Geoffrey Litt and Daniel Jackson. 2020. Wildcard: Spreadsheet-Driven
Customization of Web Applications. In Companion Proceedings of the
4th International Conference on the Art, Science, and Engineering of
Programming. Association for Computing Machinery, Porto, Portugal.,
10. https://doi.org/10.1145/3397537.3397541

[19] Allan MacLean, Kathleen Carter, Lennart Lövstrand, and Thomas
Moran. 1990. User-Tailorable Systems: Pressing the Issueswith Buttons.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems Empowering People - CHI ’90. ACM Press, Seattle, Washington,
United States, 175–182. https://doi.org/10.1145/97243.97271

[20] Matt McCutchen, Shachar Itzhaky, and Daniel Jackson. 2016. Object
Spreadsheets: A NewComputational Model for End-User Development
of Data-Centric Web Applications. In Proceedings of the 2016 ACM
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software - Onward! 2016. ACM Press, Amsterdam,
Netherlands, 112–127. https://doi.org/10.1145/2986012.2986018

https://doi.org/10.1016/S0360-1315(99)00029-9
https://doi.org/10.1016/S0360-1315(99)00029-9
https://doi.org/10.1145/3313831.3376691
https://doi.org/10.1145/2882903.2915210
https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/2642918.2647387
https://doi.org/10.1145/2642918.2647387
https://doi.org/10.1145/1095034.1095062
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/1238844.1238845
https://doi.org/10.1145/1238844.1238845
https://doi.org/10.1145/2047196.2047226
https://doi.org/10.1145/1060745.1060762
https://doi.org/10.1145/1166253.1166274
https://doi.org/10.1145/3359591.3359737
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/3397537.3397541
https://doi.org/10.1145/97243.97271
https://doi.org/10.1145/2986012.2986018

Onward! ’20, November 18–20, 2020, Virtual, USA Geoffrey Litt, Daniel Jackson, Tyler Millis, and JessicaQuaye

[21] B. Shneiderman. 1983. Direct Manipulation: A Step Beyond Pro-
gramming Languages. Computer 16, 8 (Aug. 1983), 57–69. https:
//doi.org/10.1109/MC.1983.1654471

[22] Philip Tchernavskij. 2019. Designing and Programming Malleable Soft-
ware. PhD Thesis. Université Paris-Saclay, École doctorale nº580 Sci-
ences et Technologies de l’Information et de la Communication (STIC).

[23] Jeffrey Wong and Jason I. Hong. 2007. Making Mashups with Marmite:
Towards End-User Programming for the Web. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems - CHI ’07.
ACM Press, San Jose, California, USA, 1435–1444. https://doi.org/10.
1145/1240624.1240842

https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1145/1240624.1240842
https://doi.org/10.1145/1240624.1240842

	Abstract
	1 Introduction
	2 Example Scenario
	3 System Architecture
	3.1 Table Adapters
	3.2 Query Engine
	3.3 Table Editor

	4 Reflections on Usage
	4.1 Range of Customizations
	4.2 Viability of Scraping

	5 Vision
	5.1 Decoupling Data from Applications
	5.2 Customization by Direct Manipulation
	5.3 Semantic Wrappers

	6 Related Work
	6.1 Customization Tools
	6.2 Spreadsheets and Visual Query Interfaces

	7 Conclusion and Future Work
	Acknowledgments
	References

