
Towards End-User Web Scraping for Customization
Kapaya Katongo

MIT CSAIL
Cambridge, MA, USA
kkatongo@mit.edu

Geoffrey Litt
MIT CSAIL

Cambridge, MA, USA
glitt@mit.edu

Daniel Jackson
MIT CSAIL

Cambridge, MA, USA
dnj@csail.mit.edu

ABSTRACT
Websites are malleable: users can run code in the browser to cus-
tomize them. However, this malleability is typically only acces-
sible to programmers with knowledge of HTML and Javascript.
Previously, we developed a tool called Wildcard which empowers
end-users to customize websites through a spreadsheet-like table
interface without doing traditional programming. However, there
is a limit to end-user agency with Wildcard, because programmers
need to first create site-specific adapters mapping website data to
the table interface. This means that end-users can only customize a
website if a programmer has written an adapter for it, and cannot
extend or repair existing adapters.

In this paper, we extend Wildcard with a new system for end-
user web scraping for customization. It enables end-users to create,
extend and repair adapters, by performing concrete demonstrations
of how the website user interface maps to a data table. We describe
three design principles that guided our system’s development and
are applicable to other end-user web scraping and customization
systems: (a) users should be able to scrape data and use it in a
single, unified environment, (b) users should be able to extend and
repair the programs that scrape data via demonstration and (c)
users should receive live feedback during their demonstrations.

We have successfully used our system to create, extend and
repair adapters by demonstration on a variety of websites and we
provide example usage scenarios that showcase each of our design
principles. Our ultimate goal is to empower end-users to customize
websites in the course of their daily use in an intuitive and flexible
way, and thus making the web more malleable for all of its users.

CCS CONCEPTS
• Human-centered computing → Web-based interaction; •
Software and its engineering→ Integrated and visual devel-
opment environments.

KEYWORDS
software customization, browser extensions, end-user program-
ming, spreadsheets, web scraping

ACM Reference Format:
Kapaya Katongo, Geoffrey Litt, and Daniel Jackson. 2021. Towards End-
User Web Scraping for Customization. In Companion Proceedings of the 5th
International Conference on the Art, Science, and Engineering of Programming

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
<Programming> ’21 Companion, March 22–26, 2021, Virtual, UK
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8986-0/21/03.
https://doi.org/10.1145/3464432.3464437

(<Programming> ’21 Companion), March 22–26, 2021, Virtual, UK. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3464432.3464437

1 INTRODUCTION
Many websites on the internet do not meet the exact needs of all of
their users. End-user web customization systems like Thresher [12],
Sifter [13] and Vegemite [19] help users to tweak and adapt web-
sites to fit their unique requirements, ranging from reorganizing or
annotating content on the website to automating common tasks.
Millions of people also use tools like Greasemonkey [5] and Tam-
permonkey [7] to install browser userscripts, snippets of Javascript
code which customize the behavior of websites.

In our prior work, we presented Wildcard [20, 21], a customiza-
tion system which enables end-users to customize websites through
direct manipulation. It does this by augmenting websites with a
table view that shows their underlying structured data. The table
is bidirectionally synchronized with the original website, so end-
users can easily customize the website by interacting with the table,
including sorting and filtering data, adding annotations, and run-
ning computations in a spreadsheet formula language. Wildcard
enables end-users to be creators of browser userscripts (and not just
consumers) without having to write Javascript code.

Wildcard has a key limitation. In order to enable end-users to
customize a website, a programmer first needs to code a Javascript
adapter that specifies how to scrape the website content and set up
a bidirectional synchronization with Wildcard’s table view. Even
though programmers can share adapters with end-users, this means
that an end-user can only use Wildcard on websites where some
programmer has already written an adapter. Additionally, if an
adapter doesn’t scrape the desired data, or stops functioning cor-
rectly when a website changes, an end-user has no recourse to
extend or repair it on their own.

In this paper, we describe an addition to Wildcard: a system that
enables end-users to create, extend and repair website adapters by
demonstration within the browser. Using this scraping system, an
end-user can perform web customizations using Wildcard on arbi-
trary websites, without ever needing to code an adapter. Through
a series of examples, we show that our system can create Wildcard
adapters on a variety of websites via demonstration (Section 2).
We also describe key aspects of our system and how web scraping
for customization leads to a constraint that simplifies the wrapper
induction [16] task used to generalize user demonstrations (Sec-
tion 3).

We then describe the principles underlying the design of our
system (Section 4):

• Unified Environment: Users should be able to scrape data
and interact with the scraped data in a single, unified en-
vironment. This minimizes the barrier to fluidly switching

https://doi.org/10.1145/3464432.3464437
https://doi.org/10.1145/3464432.3464437

<Programming> ’21 Companion, March 22–26, 2021, Virtual, UK Kapaya Katongo, Geoffrey Litt, and Daniel Jackson

Figure 1: Our work enables end-users to create Wildcard site adapters by demonstration.

back and forth between the two tasks, rather than treating
them as entirely independent tasks.

• Editing By Demonstration: Users should be able to not
only create programs for scraping data by demonstration,
but also extend and repair the programs by demonstration.
This enables users to build on other users’ work, and is
especially important in the context of web scraping since
scrapers break as the underlying website changes.

• Live Programming: Users should receive live feedback as
they perform demonstrations. The system should indicate
how it is generalizing from the user’s example and what the
resulting data will look like, so that the user can adjust their
demonstrations on the fly and quickly arrive at the desired
result.

While each of these principles has been explored in prior work
by various researchers, our contribution in this work is combining
them in a novel way for the domain of end-user web scraping and
customization.

Finally, we share our broader vision for end-user web scraping for
customization, and some opportunities for future work, including
a proposal for how Wildcard’s spreadsheet-like formula language
might augment demonstrations to provide end-users with more
expressiveness in the web scraping process (Section 6).

2 MOTIVATING EXAMPLES
In this section, we show how end-users can create, extend and
repair adapters for Wildcard via demonstration.

2.1 Creating an Adapter
Jen wants to customize her experience on Weather.com by sorting
the ten-day forecast based on the description of the weather on
each day, allowing her to easily view all the sunny days. She starts
the adapter creation process by clicking a context menu item within

the Weather.com page, and hovers over a data value she might like
to scrape.

The system provides live feedback as Jen hovers, demonstrating
the live programming principle. The workflow steps are shown
in Figure 2:

• The row of data is annotated in the page with a border, to
indicate that she will be demonstrating values from within
that row (Part 3).

• The column of data is highlighted in the page with a green
background, to show how the system has generalized her
demonstration across all the rows in the data (Part 4).

• A table view appears at the bottom of the screen, and displays
how the values will appear in the data table (Part 5).

Jen tries hovering over several other elements in the page, taking
advantage of the live feedback environment to decide what data
would be useful. After considering several options, she decides to
save the date field in the first column of the table, and commits the
action by clicking.

Next, she performs a similar process to fill the next column with
the weather descriptions. After filling both columns, she also tries
hovering over previously scraped data, and the toolbar at the top
of the page indicates which column corresponds to the previously
scraped data. Finally, she ends the adapter creation process (Part 7)
and is able to immediately sort the forecast by the weather descrip-
tion column, because Wildcard provides a unified environment
that combines both scraping and customizing.

2.2 Extending an Adapter
Jen has previously used Wildcard to customize timeanddate.com,
sorting holidays by day of the week. She comes up with a new
customization idea: sorting holidays by category so she can view all
the federal holidays together. The current site adapter she is using
does not populate the category column in the table, so she needs to
extend the adapter. She can immediately perform the extension in

Towards End-User Web Scraping for Customization <Programming> ’21 Companion, March 22–26, 2021, Virtual, UK

Figure 2: Creating an adapter: 1) column data will be scraped into, 2) system’s controls, 3) demonstrated column value and
row from which columns should be demonstrated from 4) column values determined by generalization algorithm 5) column
values populated in table, 6) next column to scrape data into and 7) button to save adapter created by demonstration

<Programming> ’21 Companion, March 22–26, 2021, Virtual, UK Kapaya Katongo, Geoffrey Litt, and Daniel Jackson

the context of the page, using our system’s support for editing by
demonstration.

The workflow is shown in Figure 3. While viewing the website,
she clicks the “Edit Adapter” button (Part 2) above the Wildcard
table to initiate the adapter editing process. As she hovers over
the currently scraped values, the columns they belong to are high-
lighted. Finally, she clicks on “Federal Holiday” (Part 3) to add the
new column of data to the table (Part 4) and saves the changes (Part
5). Jen then proceeds to sort the list by the type of holiday without
the intervention of a programmer.

2.3 Repairing an Adapter
Jen next visits Google Scholar to look up references for a project.
Unfortunately, the customization she had applied to sort publi-
cations by their title (which is not natively supported by Google
Scholar) is no longer working. In fact, the column in the Wildcard
table that contained all the publication titles is empty, because the
website’s internals changed and broke the adapter’s scraping logic.
Jen can repair this on her own, again taking advantage of editing
by demonstration.

The workflow is shown in Figure 4. Jen initiates the editing pro-
cess (Part 2), and initially hovers over the desired value to demon-
strate the column she wants to scrape. However, the live program-
ming interface indicates to her that the values would be populated
into column D; instead, she wants the values to be inserted into
column A where they previously appeared. So, Jen clicks on the
symbol for column A (Part 3) to indicate that she wants to scrape
the values into that column and demonstrates the first publication
title (Part 4). The missing values are now back in the table (Part 5).
She then proceeds to save her changes (Part 6) and re-apply her
customization to the website by sorting the publications by their
title.

3 SYSTEM IMPLEMENTATION
We implemented our end-user web scraping system as an addition
to the Wildcard browser extension. Prior to this work, website
adapters were manually coded in Javascript by programmers. Now,
adapters can be automatically created via demonstration. We start
by describing our implementations of wrapper induction [16], live
programming, and editing by demonstration, and then discuss some
of the current limitations of our system.

3.1 Wrapper Induction Algorithm
In order to generate reusable scrapers from user demonstrations,
our system solves the wrapper induction [16] task: generalizing
from a small set of user-provided examples to a scraping specifi-
cation that will work on other parts of the website, and on future
versions of the website.

We take an approach similar to that used in other tools like
Vegemite [19] and Sifter [13]:

• We generate a single row selector for the website: a CSS
selector that returns a set of Document Object Model (DOM)
elements corresponding to individual rows of the table.

• For each column in the table, we generate a column selector, a
CSS selector that returns the element containing the column
value within that row.

One important difference is that our algorithm only accepts row
elements that have direct siblings with a similar structure. We refer
to this as the row-sibling constraint. Later, we describe how the
constraint provides a useful simplification of the wrapper induction
task and discuss the resulting limitations this puts on our system.

When a user first demonstrates a column value, the generaliza-
tion algorithm is responsible for turning the demonstration into a
row selector that will correctly identify all the row elements in the
website and a column selector that will correctly identify the ele-
ment that contains the column value within a row element. During
subsequent demonstrations, the generalization algorithm uses the
generated row selector to find the row element that contains the
column value and generates a column selector which identifies the
corresponding column element.

At a high level, the wrapper induction algorithm’s challenge is
to traverse far enough up in the DOM tree from the demonstrated
element to find the element which corresponds to the row. We solve
this using a heuristic; the basic intuition is to find a large set of
elements with similar parallel structure. Consider the sample HTML
layout in Figure 5, which displays a truncated table of superheroes,
with each row containing some nested structure:

The user performs a demonstration by clicking on element 𝑎 in
Figure 5 containing “Tony Stark.” Our algorithm traverses upwards
from the demonstrated element, considering each successive parent
element (𝑏1, 𝑐1 and 𝑑 in Figure 5) as a potential candidate for the
row element. For each parent element el, the process is as follows:

1. compute a column selector selector that, when executed
on el, only returns the demonstrated element

2. for each sibling el' of el, execute selector on el' and
record whether the selector returns an element. If it does,
this suggests that el' has some parallel structure to el.

3. compute 𝑒𝑙𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 , the number of sibling elements of el
which have parallel structure.

Notice how the row-sibling constraint simplifies the problem.
Row candidates without siblings with parallel structure (𝑏1 in Fig-
ure 5) have 𝑒𝑙𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 = 0, thus disqualifying them.

The algorithm stops traversing upwards once it reaches the BODY
element. It chooses the element with the largest positive value of
𝑒𝑙𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 as the row element, preferring nodes lower in the tree
as a tiebreaker. It then generates a row selector which returns the
row element and all its direct siblings. The final value of selector
is the column selector since traverses from the row element to
the demonstrated data value. These row and column selectors are
then used to generate a scraping adapter which returns the DOM
elements corresponding to a data row in the table and sets up the
bidirectional synchronization.

3.2 Live Programming
The idea of “liveness” in programming can be traced back to Tan-
imoto’s work on VIVA [26]. It generally describes programming
environments in which programmers receive immediate feedback
about a program while it is being created. In the context of Wild-
card, adapters are the program, the table interface is the output
of the program and the highlighting on the website is the visual
representation of the program.

Towards End-User Web Scraping for Customization <Programming> ’21 Companion, March 22–26, 2021, Virtual, UK

Figure 3: Extending an adapter: 1) table showing current columns and rows, 2) button for initiating adapter extension process,
3) new column value demonstrated and generalized, 4) new column values in the table and 5) button to save adapter extended
by demonstration.

<Programming> ’21 Companion, March 22–26, 2021, Virtual, UK Kapaya Katongo, Geoffrey Litt, and Daniel Jackson

Figure 4: Repairing an adapter: 1) empty column in table because website changed and adapter can no longer scrape values,
2) button for initiating adapter repair 3) column to scrape data into, 4) missing column value demonstrated and generalized,
5) missing column values back in the table and 6) button to save adapter repaired by demonstration.

Towards End-User Web Scraping for Customization <Programming> ’21 Companion, March 22–26, 2021, Virtual, UK

Figure 5: Our system applies a heuristic to identify DOM elements that correspond to rows in the data table.

Live programming in our system is implemented by continually
re-generating an adapter based on the DOM element under the
user’s cursor and the previous demonstrations if any, reverting if
the user hovers away and committing when the user clicks. The
row and column selectors generated during the wrapper induction
process are used to highlight all the matching elements on the
website and create an adapter. Highlighting all thematching column
elements on thewebsite provides visual feedback about the system’s
generalization to the user. Creating an adapter enables the system to
populate the table view and set up the bidirectional synchronization.
Because the table is populated and the bidirectional synchronization
is set up, users can customize as they scrape. Live programming is
possible in our system because the wrapper induction algorithm
and adapters execute very quickly. We have yet to benchmark
the performance in detail and compare it to other end-user web
scraping systems like FlashProg [23] that offer live programming
environments.

3.3 Editing by Demonstration
Our system generates adapters with the row selector and the col-
umn selectors used to scrape the data. The row selector is a CSS
selector that identifies all the row elements of the data and the col-
umn selectors are CSS selectors that identify each column’s column
elements.

When the editing process is initiated, the adapter’s row selector
and column selectors are used to highlight the previously scraped
values on the website. Furthermore, the generalization algorithm
takes the adapter’s row selector and uses it as the basis to gener-
ate new column selectors after each demonstration. When a new
column is demonstrated, our system appends the generated col-
umn selector to the list of column selectors. This is how adapters
are extended to create new columns. When an existing column is
demonstrated, our system replaces the column’s current column

selector with the generated column selector. This is how adapters
are repaired to fix broken columns.

Extending and repairing adapters in this manner is feasible be-
cause column selectors are independent of each other: changing one
column’s selector does not affect another column’s selector. This
is not the case for systems in which the output of demonstrations
are dependent on each other. For example, in a web automation
sequence that involves clicking on a button to open a menu and
then entering text into the menu’s text input, the step that enters
the text is not independent because it depends on the step that
clicks the button to open the menu.

3.4 Limitations
Since our system is still under development, it has a variety of
limitations. In this section we describe two of the most notable
ones.

3.4.1 Wrapper Induction Algorithm. The row-sibling constraint we
mentioned earlier is important for the end goal of customization
because row elements that are not direct siblings may not represent
data on the website that should be related as part of the same table
by customizations such as sorting and filtering. In Figure 6 we
demonstrate two examples where this limitation becomes relevant.

Generalization Limitation 1 shows a case where the data is dis-
played in a grouped structure. Without the constraint that row
elements have to be direct siblings, the row generalization algo-
rithm could determine the row selector to be .avenger (elements
with blue border) because it matches the largest number of parallel
structures (has the largest 𝑒𝑙𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠). While this may be the cor-
rect result for the task of extraction, it is not necessarily suitable
for the task of customization. When the user sorts and filters, this
could result in rows moving between the two tables, disrupting the
nested layout and producing a confusing result. Because of this,

<Programming> ’21 Companion, March 22–26, 2021, Virtual, UK Kapaya Katongo, Geoffrey Litt, and Daniel Jackson

Figure 6: Two example pages where our generalization algorithm does not currently work. The elements with the blue border
correspond to rows of the data and the elements with green borders correspond to tables of data in each layout respectively.
For the layout on the left, sorting could lead to rows from one table ending up in the other. For the layout on the right, sorting
would lead to a distortion of the table since the column elements cannot be moved as a unit.

our system currently does not support such layouts. In the future,
we may explore the possibility of extracting multiple tables from a
website and joining them together.

Generalization Limitation 2, also in Figure 6, shows a case where
the website contains one table of data in which rows are made up
of alternating H1 and SPAN tags (elements within blue border). This
poses a challenge because each row does not correspond directly
to a single DOM element; instead, each row consists of multiple
consecutive DOM elements without any grouped structure. Moving
the rows when customizing the website would require treating
multiple consecutive elements as a single row. This is supported in
the underlying Wildcard system, but not yet by our demonstration-
based approach.

3.4.2 Data Loaded after Initial Render. Our system currently does
not support scraping data loaded after the initial website renders as
the user scrolls. Site adapters hand-coded in Javascript can specify
event listeners on the DOM to re-execute the scraping code when
new data is loaded as a user scrolls. In future work, we plan to
provide a mechanism for end-users to specify when a demonstrated
adapter should re-execute its scraping code in response to user
scrolling. We also do not support scraping data across multiple
pages of related data, but this context poses more fundamental
challenges to the idea of web customization, since users would
somehow need to perform customizations across multiple pages in
coordination.

4 DESIGN PRINCIPLES
Below, we describe our use of three existing design principles in
a novel way for the domains of end-user web scraping and cus-
tomization.

4.1 Unified Environment
In the previous iteration of Wildcard, web scraping was an en-
tirely separate activity from customization. Programmers that wrote
scraping adapters would need to switch into an IDE to write code
as part of customizing a new website. This divide between tasks is
common in other domains:

• In data science, workflows revolve between cleaning and
using data but this often happens in different environments.
The creators of Wrex [11], an end-user programming-by-
example system for data wrangling, reported that “although
data scientists were aware of and appreciated the productiv-
ity benefits of existing data wrangling tools, having to leave
their native notebook environment to perform wrangling
limited the usefulness of these tools.” This was a major rea-
son Wrex was developed as an add-on to Jupyter notebooks,
the environment in which data scientists use their data.

• In web scraping, if a user comes across an omission while
working with data scraped from a website, they need to
switch from the environment in which they are using the
data to the environment in which they created their scrap-
ing code in order to edit and re-run it. This can be seen in
many end-user web scraping systems like Rousillon [9]and
FlashExtract [17] and commercial tools like import.io [14],
dexi.io [10], Octoparse [24] and ParseHub [25].

• Inweb customization, the creators of Vegemite [19], a sys-
tem for end-user programming of mashups, reported that
participants of its user study thought “it was confusing to
use one technique to create the initial table, and another
technique to add information to a new column.” This hints
at the need for both a unified environment and a unified
workflow.

In this work, we have combined scraping and customization
into a single, unified environment with a unified workflow. The

Towards End-User Web Scraping for Customization <Programming> ’21 Companion, March 22–26, 2021, Virtual, UK

goal is to minimize the environment switch between extracting
the data and using the data. A user might start out by scraping
some data on a website, and then switch to customizing the website
using the results. Then, they might realize they need more data to
perform their desired task, at which point they can easily extend
the adapter by demonstrating new columns. All of these tasks take
place right in the browser, where the user was initially already
using the website. Instead of bringing the data to another tool, we
have brought a tool to the data. This principle relates to the idea of
“in-place toolchains” [4] for end-user programming systems: users
should be able to program using familiar tools in the context where
they already use their software.

Of course, there is value in specialized tools:Wildcard has nowhere
near the full capabilities of spreadsheet software or databases. Nev-
ertheless, we believe a single, unified environment for scraping and
customization presents a significantly lower barrier to entry for
customization.

4.2 Editing by Demonstration
Many end-user web scraping and macro systems allow users to
create programs by demonstration but do not offer a way to edit
them by demonstration. In Rousillon [9], a web scraping program
created by demonstration can only be edited through a high-level,
block-based programming language called Helena [6]. Helena sup-
ports adding control flow logic (conditional execution, wait times
etc) which is invaluable for automating access to websites. How-
ever, it does not support extending the web scraping code to add
new columns after the demonstration or repairing it to provide new
selectors if the website changes. In Vegemite [19], a web automa-
tion program created through demonstration can only be edited by
editing the text-based representation of the automation demonstra-
tions. In fact, only the demonstrations used to perform automations
on the scraped website data can be edited. If a user needs to add
a new column or repair an existing one in the scraped data table,
they need to re-demonstrate the columns and then re-run the au-
tomation script. One exception to existing editing models worth
pointing out is import.io [14]. It allows users to add new columns
by demonstration but it is not clear whether deleting a column and
re-demonstrating it could serve the purpose of repair.

In the prior iteration of Wildcard, if a website’s hand-coded
adapter stops working correctly because the website changes, an
end-user’s customizations will often break too. Furthermore, end-
users cannot extend the scraping adapter to add columns to the table
in order to perform new customizations. This goes against MacLean
et. al.’s vision of user-tailorable systems [22] that give users “a
feeling of ownership of the system, to feel in control of changing
the system and to understand what can be changed.” Providing an
easy way for users to edit programs is therefore fundamental to
fully democratizing web customization.

Editing by demonstration makes end-users first-class citizens
in the customization ecosystem. Because users interact with the
scraped data through a unified environment directly in the context
of the website, it is easy to initiate the scraping system in editing
mode: the scraping system is simply booted up using metadata
stored with the scraping adapter to the state when the demonstra-
tion was completed. Users that have gone through the creation

process will immediately realize what to do in order to extend or
repair the adapter. Users that have not gone through the creation
process might have a harder time but we provide visual clues (such
as highlighting the row to perform demonstrations from with a
green border) and live programming (immediately preview the
results of demonstrations) that serve as guides.

As discussed in Section 3, editing by demonstration in the web
scraping domain is feasible because column selectors are indepen-
dent of each other. However, this is not the case with row selectors
because column selectors are dependent on them. Our system there-
fore does not support editing rows but this an acceptable limitation
given our focus on extension and repair which only involve column
selectors.

4.3 Live Programming
In many programming-by-demonstration web scraping systems
[9, 19], users only get full feedback about the program’s execution
(result of wrapper induction and the scraped values) after providing
all the demonstrations. This means they cannot adjust their demon-
strations in response to the system’s feedback as they demonstrate.

Our end-user web scraping system provides level 3 liveness un-
der Tanimoto’s liveness hierarchy [26]. Level 3 liveness describes a
system that is constantly listening for actions from the user, auto-
matically re-constructing and re-executing the program whenever
one happens instead of requiring an explicit command from the user.
To eliminate the described edit-compile-debug cycle, our system au-
tomatically runs the wrapper induction algorithm and generates an
adapter after each user demonstration. As we showed in Section 2,
when a user demonstrates a value of a column they wish to scrape,
our system immediately shows how it has generalized the user’s
demonstration across the other rows of the data by highlighting the
all relevant values on the website. It also populates the table with
the scraped data based on the latest demonstration. The highlight-
ing and table population serve to provide a visual representation of
the adapter’s execution.

Many successful end-user programming systems such as spread-
sheets and SQL provide users with immediate results after enter-
ing commands. Our live programming environment is particularly
similar to that of FlashProg [23], a framework that provides user
interface support for programming-by-demonstration systems like
FlashExtract [17], and relates to the idea that an important quality
of end-user programming is “interaction with a living system” [4].

Unlike text-based commands which are only valid once complete
(e.g SELECT * FRO versus SELECT * FROM user_table), the target
of demonstration commands (the value of a DOM element under
the cursor) is the same during both hover and click. This allows us
to execute a command before a user completes it, thereby providing
them with a preview of the results on hover.

There are limits to this approach. Providing live feedback on
websites with a large number of DOM elements or complex CSS
selectors can slow down the generalization process, especially if a
user is constantly moving their cursor. Furthermore, many datasets
are too large to preview in the table in their entirety; the user
might benefit more from the live feedback if it could summarize
large datasets. For example, FlashProg provides a summary of the

<Programming> ’21 Companion, March 22–26, 2021, Virtual, UK Kapaya Katongo, Geoffrey Litt, and Daniel Jackson

generalization through a color-coded minimap next to the scrollbar
of its extraction interface.

5 RELATEDWORK
End-user web scraping for customization relates to existing work
in end-user web scraping and end-user web customization by a
number of tools.

5.1 End-User Web Scraping
FlashProg [23] is a framework that provides user interface support
for FlashExtract [17], a framework for data scraping by examples.
FlashProg’s interface provides immediate visual feedback about the
generalization and scrapes the matched values into an output tab.
In addition, it has a program viewer tab that contains a high level
description of what the generated program is doing and provides
a list of alternative programs. Finally, it has a disambiguation tab
that utilizes conversational clarification to disambiguate programs,
the conservations with the user serving as inputs to generate better
programs. Though FlashProg has many desirable features we aim
to implement in future iterations, its implementation does not align
with our goal to provide a unified environment within a browser
for scraping and customizing websites.

Rousillon [9] is a tool that enables end-users to scrape distributed,
hierarchical web data. Because demonstrations can span across sev-
eral websites and involve complex data access automation tasks,
its interface does not provide full live feedback about its general-
izations or the values to be scraped until all the demonstrations
have been provided and the generated program has been run. If
run on a website it has encountered before, Rousillon makes all the
previously determined generalizations visible to the user by color-
coding the values on the website that belong to the same column.
This is a desirable feature for our system as users will not have
to actively explore in order to discover which values are available
for scraping and how they are related to each other. On the exten-
sion and repair front, Rousillon presents the web scraping code
generated by demonstration as an editable, high-level, block-based
language called Helena [6]. While Helena can be used to perform
more complex editing tasks like adding control flow, it does not
support adding or repairing columns after the demonstrations and
presents a change in the model used for creation. Our system main-
tains the model used for creation by allowing users to extend and
repair web scraping code via demonstration.

5.2 End-User Web Customization
Vegemite [19] is a tool for end-user programming of mashups. It
has two interfaces: one for scraping values from a website and
another for creating scripts that operate on the scraped values. The
web scraping interface does not provide live feedback about the
generalization on hover but after a user clicks a value, the interface
shows the result of the system’s generalization by highlighting the
all matched values. Furthermore, even though the interface also
has a table, the table is only populated with the scraped values after
all the demonstrations have been provided. The scripting interface
utilizes CoScripter [18] which is used to record operations on the
scraped values for automation. For example, the scripting interface
can be used to demonstrate the task of copying an address in the

data table, pasting it into a walk score calculator and pasting the
result back into the table. The script would then be generalized to
all the rows and re-run to fill in the remaining walk scores. Co-
Scripter provides the generated automation program as text-based
commands, such as “paste address into ‘Walk Score’ input,” which
can be edited after the program is created via “sloppy programming”
[19] techniques. However, this editing does not extend to the web
scraping interface used for demonstrations and presents a change
in the model used for creation.

Sifter [13] is a tool that augments websites with advanced sort-
ing and filtering functionality. Similarly to Wildcard, it uses web
scraping techniques to extract data from websites in order to enable
customizations. However, Wildcard supports a broader range of
customizations beyond sorting and filtering, including adding anno-
tations to websites and running computations with a spreadsheet
formula language. Our scraping system intentionally provides less
automation than Sifter. Sifter attempts to automatically detect items
and fields on the page with a variety of clever heuristics, including
automatically detecting link tags and considering the size of ele-
ments on the page. It then gives the user the option of correcting
the result if the heuristics do not work properly. In contrast, our
heuristics are simpler and make fewer assumptions about the struc-
ture of websites. Rather, we give more control to the user from the
beginning of the process, and incorporate live feedback to help the
user provide useful demonstrations. We hypothesize that focusing
on a tight feedback loop rather than automation may support a
scraping process that is just as fast as an automated one, but gives
the user finer control and extends to a greater variety of websites
where more complex heuristics do not apply. However, further user
testing is required to actually validate this hypothesis.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented our progress towards end-user web
scraping for customization, to empower end-users in Wildcard’s
ecosystem to create, extend and repair scraping adapters. There are
several outstanding issues and open questions we hope to address
in future work.

Like existing programming-by-demonstration approaches, web
scraping in our current implementation is limited to what can
be demonstrated by point-and-click. More generally, this surfaces
a fundamental limitation of programming-by-demonstration: the
inability to specify logic. One solution for this is taking advan-
tage of spreadsheet formulas which have enabled millions of end-
users to specify logic. Because of this, Wildcard already includes a
spreadsheet-like formula language for specifying customizations.
We plan to extend this language to augment our demonstration-
based web scraping with the goal of raising the ceiling on the
expressiveness available to end-users. One concrete use case for
this is scraping DOM element attributes which cannot be demon-
strated by point-and-click but contain valuable data. For example,
link elements have an href attribute which contain the URLs associ-
ated with the link element and video elements have currentTime and
duration attributes which contain data about the current playback
position and duration respectively. This use of spreadsheet-like for-
mulas to enable end-users to specify logic is related to approaches

Towards End-User Web Scraping for Customization <Programming> ’21 Companion, March 22–26, 2021, Virtual, UK

taken by Microsoft Power Apps [2], Glide [1], Coda [3] and Gneiss
[8].

To assess our design principles, we plan to carry out a broader
evaluation of our system through a user study. So far, we have
only tested the system amongst ourselves and a small number of
colleagues. More testing is needed to understand whether it can
be successfully used among a broader set of users across a wider
variety of websites. We also plan to provide more insight, feedback
and control into the wrapper induction process. This is particularly
important when the system produces an error or is not able to
generate an adapter for a website. One solution for this would be
to incorporate a version of the program viewer and disambiguation
features of FlashProg [23]. Wrangler [15], whose interface is also
centered around a table representation, could also provide some
inspiration.

Our ultimate goal is to empower end-users to customize websites
in the course of their daily use in an intuitive and flexible way, and
thus make the web more malleable for all of its users.

ACKNOWLEDGMENTS
Thank you to Gloria Lin, Joshua Pollock, the members of MIT’s
Software Design Group, the anonymous reviewers of PX/21 and
the particpants of PX/21 for providing valuable feedback on this
work. The authors gratefully acknowledge the support of the CNS
division of the National Science Foundation through award number
1801399.

REFERENCES
[1] [n.d.]. Build an App from a Google Sheet in Five Minutes, for Free • Glide. https:

//www.glideapps.com/
[2] [n.d.]. Business Apps | Microsoft Power Apps. https://powerapps.microsoft.com/en-

us/
[3] Coda | A new doc for teams. [n.d.]. Coda | A New Doc for Teams. Coda | A new

doc for teams. https://coda.io/welcome
[4] [n.d.]. End-User Programming. https://www.inkandswitch.com/end-user-

programming.html
[5] [n.d.]. Greasemonkey - GreaseSpot Wiki. https://wiki.greasespot.net/

Greasemonkey
[6] [n.d.]. Helena | Web Automation for End Users. http://helena-lang.org/
[7] [n.d.]. Tampermonkey for Chrome. http://www.tampermonkey.net
[8] Kerry Shih-Ping Chang and Brad A. Myers. [n.d.]. Creating Interactive Web

Data Applications with Spreadsheets. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology (Honolulu Hawaii USA,
2014-10-05). ACM, 87–96. https://doi.org/10.1145/2642918.2647371

[9] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. [n.d.]. Rousillon: Scraping
Distributed Hierarchical Web Data. In The 31st Annual ACM Symposium on User
Interface Software and Technology - UIST ’18 (Berlin, Germany, 2018). ACM Press,
963–975. https://doi.org/10.1145/3242587.3242661

[10] dexi.io. [n.d.]. The Most Powerful Web Scraping Software Available. https://
webscraping.dexi.io

[11] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. [n.d.].
Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable

Code for Data Scientists. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (Honolulu HI USA, 2020-04-21). ACM, 1–12. https:
//doi.org/10.1145/3313831.3376442

[12] Andrew Hogue and David Karger. [n.d.]. Thresher: Automating the Unwrapping
of Semantic Content from the World Wide Web. In Proceedings of the 14th Inter-
national Conference on World Wide Web - WWW ’05 (Chiba, Japan, 2005). ACM
Press, 86. https://doi.org/10.1145/1060745.1060762

[13] David F. Huynh, Robert C. Miller, and David R. Karger. [n.d.]. Enabling Web
Browsers to Augment Web Sites’ Filtering and Sorting Functionalities. In Pro-
ceedings of the 19th Annual ACM Symposium on User Interface Software and
Technology - UIST ’06 (Montreux, Switzerland, 2006). ACM Press, 125. https:
//doi.org/10.1145/1166253.1166274

[14] import.io. [n.d.]. Data Scraping | Web Scraping | Screen Scraping | Extract. Import.io.
https://www.import.io/product/extract/

[15] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. [n.d.].
Wrangler: Interactive Visual Specification of Data Transformation Scripts. In
Proceedings of the 2011 Annual Conference on Human Factors in Computing
Systems - CHI ’11 (Vancouver, BC, Canada, 2011). ACM Press, 3363. https:
//doi.org/10.1145/1978942.1979444

[16] Nicholas Kushmerick. [n.d.]. Wrapper Induction: Efficiency and Expressiveness.
118, 1 ([n. d.]), 15–68. https://doi.org/10.1016/S0004-3702(99)00100-9

[17] Vu Le and Sumit Gulwani. [n.d.]. FlashExtract: A Framework for Data Extraction
by Examples. In Proceedings of the 35th ACM SIGPLANConference on Programming
Language Design and Implementation (Edinburgh United Kingdom, 2014-06-09).
ACM, 542–553. https://doi.org/10.1145/2594291.2594333

[18] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. [n.d.]. CoScripter:
Automating & Sharing How-to Knowledge in the Enterprise. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (New York, NY,
USA, 2008-04-06) (CHI ’08). Association for Computing Machinery, 1719–1728.
https://doi.org/10.1145/1357054.1357323

[19] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher, and Tessa A. Lau. [n.d.].
End-User Programming of Mashups with Vegemite. In Proceedings of the 14th
International Conference on Intelligent User Interfaces (New York, NY, USA, 2009-
02-08) (IUI ’09). Association for Computing Machinery, 97–106. https://doi.org/
10.1145/1502650.1502667

[20] Geoffrey Litt and Daniel Jackson. [n.d.]. Wildcard: Spreadsheet-Driven Cus-
tomization of Web Applications. In Companion Proceedings of the 4th Interna-
tional Conference on the Art, Science, and Engineering of Programming (Porto,
Portugal., 2020). Association for Computing Machinery, 10. https://doi.org/10.
1145/3397537.3397541

[21] Geoffrey Litt, Daniel Jackson, Tyler Millis, and Jessica Quaye. [n.d.]. End-User
Software Customization by Direct Manipulation of Tabular Data. In Proceedings
of the 2020 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Virtual USA, 2020-11-18). ACM,
18–33. https://doi.org/10.1145/3426428.3426914

[22] Allan MacLean, Kathleen Carter, Lennart Lövstrand, and Thomas Moran. [n.d.].
User-Tailorable Systems: Pressing the Issues with Buttons. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (New York, NY,
USA, 1990-03-01) (CHI ’90). Association for Computing Machinery, 175–182.
https://doi.org/10.1145/97243.97271

[23] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr
Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. [n.d.]. User Interac-
tionModels for Disambiguation in Programming by Example. In Proceedings of the
28th Annual ACM Symposium on User Interface Software & Technology (Charlotte
NC USA, 2015-11-05). ACM, 291–301. https://doi.org/10.1145/2807442.2807459

[24] Octoparse. [n.d.]. Web Scraping Tool & Free Web Crawlers | Octoparse. https:
//www.octoparse.com/#

[25] ParseHub. [n.d.]. ParseHub | Free Web Scraping - The Most Powerful Web Scraper.
https://www.parsehub.com/

[26] Steven L. Tanimoto. [n.d.]. VIVA: A Visual Language for Image Processing. 1, 2
([n. d.]), 127–139. https://doi.org/10.1016/S1045-926X(05)80012-6

https://www.glideapps.com/
https://www.glideapps.com/
https://powerapps.microsoft.com/en-us/
https://powerapps.microsoft.com/en-us/
https://coda.io/welcome
https://www.inkandswitch.com/end-user-programming.html
https://www.inkandswitch.com/end-user-programming.html
https://wiki.greasespot.net/Greasemonkey
https://wiki.greasespot.net/Greasemonkey
http://helena-lang.org/
http://www.tampermonkey.net
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1145/3242587.3242661
https://webscraping.dexi.io
https://webscraping.dexi.io
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/1060745.1060762
https://doi.org/10.1145/1166253.1166274
https://doi.org/10.1145/1166253.1166274
https://www.import.io/product/extract/
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1145/1978942.1979444
https://doi.org/10.1016/S0004-3702(99)00100-9
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/1357054.1357323
https://doi.org/10.1145/1502650.1502667
https://doi.org/10.1145/1502650.1502667
https://doi.org/10.1145/3397537.3397541
https://doi.org/10.1145/3397537.3397541
https://doi.org/10.1145/3426428.3426914
https://doi.org/10.1145/97243.97271
https://doi.org/10.1145/2807442.2807459
https://www.octoparse.com/#
https://www.octoparse.com/#
https://www.parsehub.com/
https://doi.org/10.1016/S1045-926X(05)80012-6

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Creating an Adapter
	2.2 Extending an Adapter
	2.3 Repairing an Adapter

	3 System Implementation
	3.1 Wrapper Induction Algorithm
	3.2 Live Programming
	3.3 Editing by Demonstration
	3.4 Limitations

	4 Design Principles
	4.1 Unified Environment
	4.2 Editing by Demonstration
	4.3 Live Programming

	5 Related Work
	5.1 End-User Web Scraping
	5.2 End-User Web Customization

	6 Conclusion And Future Work
	References

