
Runtime Visualization for Model-View-Update GUIs

Geoffrey Litt
MIT CSAIL

glitt@mit.edu

ABSTRACT
Visualizing the runtime behavior of programs can help pro-
grammers with targeted debugging and general understand-
ing. For understanding complex programs, visualizations ab-
stracted from the low-level code are most helpful, but this
introduces new challenges: how does the programmer specify
what to visualize, and how do they visualize complex data
structures which aren’t just primitive values?

In this work, I present an approach to visualizing the behavior
of user interfaces built with the Model-View-Update pattern. I
present a prototype runtime visualization system built on the
Redux library and argue that, by exploiting the natural abstrac-
tion characteristics of this application architecture, we can
create useful runtime visualizations with minimal programmer
effort.

Author Keywords
Program visualization, program understanding, debugging

INTRODUCTION
Much recent work in program visualization [17, 4, 5, 11, 7]
focuses on low-level details: showing the values of individual
variables, connected to individual lines of source code. This
works well for small programs, and for helping novices un-
derstand the basics of programming. But these visualizations
don’t address the needs of more experienced programmers
working with larger programs. Gaining a general understand-
ing of a large program requires zooming out from individual
lines of code.

This leads to the idea of abstract program visualization: creat-
ing abstract, program-specific views of runtime state or static
code, to help someone debug or understand the program. This
idea has been explored in the context of teaching algorithms
[1, 16] and understanding the behavior of multithreaded Java
programs [13, 15]. But abstract visualizations create a new
challenge [14]: how can we enable the programmer to create
program-specific abstract visualizations with minimal effort?
On the one hand, overly generic visualizations (as used in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI’20, April 25–30, 2020, Honolulu, HI, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6708-0/20/04. . . $15.00

DOI: https://doi.org/10.1145/3313831.XXXXXXX

most low-level visualization systems) will often fail to cap-
ture the higher-level meaning of the specific program. On the
other hand, if a visualization takes too much work to create, it
won’t be realistic for programmers to create the visualization
in practice.

I think a promising strategy for approaching this problem is
to create runtime visualization systems coupled to a particular
domain-specific framework or DSL. Frameworks and DSLs
occupy an intermediate place between general-purpose lan-
guages and specific programs. They often impose a particular
mental model, code architecture style, and other constraints
that usefully narrow the space of possible programs relative to
a general-purpose language. On the other hand, there are still
many different programs that can be built in one framework,
so the effort of building a visualization system can be amor-
tized over thousands of programs rather than concentrated on
a single one.

To concretely test this strategy, in this work I propose a runtime
program visualization system for user interfaces built with the
Model-View-Update (MVU) architecture [3], also commonly
known as the Elm Architecture [2]. MVU encourages the state
of the interface to be centralized in a single data structure,
derived by running a pure reducer function over a stream of
events.

This architecture has many practical benefits for program
understanding and developer experience (e.g., automatically
achieving time-travel debugging), and I think it has useful
characteristics for abstract program visualization as well. In
particular, MVU naturally encourages programmers to define
abstractions that represent the essence of their application’s
behavior: 1) a stream of semantically meaningful events, 2)
a state object that represents all the core state of the UI. My
hypothesis is that it is possible to visualize MVU interfaces
with relatively little additional effort from the programmer,
because the architecture has already required them to do much
of the work of abstracting.

I’ve prototyped a runtime visualization system on top of
the popular Redux [12] library, which implements MVU in
Javascript. Within the limited scope of this project, I’ve fo-
cused on making a prototype specifically designed to visualize
the state of the TodoMVC demo application. I’ve designed
some visualizations tailored to the state of that application,
and through my own usage I’ve begun to gain a preliminary
understanding what kinds of visualizations might be useful
to programmers navigating execution traces of MVU applica-
tions.

https://doi.org/10.1145/3313831.XXXXXXX

Much future work remains to fully flesh out this idea, in-
cluding developing a crisper understanding of the needs of
programmers, validating this system against those needs, and
generalizing the system so that it actually works with many
Redux applications instead of just one demo app.

RELATED WORK
Reiss [14] provides a useful taxonomy of execution visual-
izations, with pointers to prior research. Some particularly
relevant dimensions for this work include abstract vs concrete,
and effort required to create the visualization.

Many systems have explored visualizing execution state at the
level of individual source lines, including Learnable Program-
ming [17], Python Tutor [4], Omnicode [6], Theia [11], and
Theseus [10].

Some systems have explored somewhat more abstract views.
Projection Boxes [Lerner [9] provides a way of selectively
showing parts of application state, and Seymour [7] provides a
“macro” visualization to generally show the layout of execution
flow, in addition to a “micro” visualization.

This work aims to provide a much more abstract view of the
application’s behavior than any of these other projects, by
avoiding doing any visualization at the level of individual
lines of code.

Other systems have explored this kind of abstract program
visualization, entirely disconnected from the source code. For
example, Balsa [1] and Tango [16] show animated views of
algorithms operating, and Jive [13] and Jove [15] visualize var-
ious high-level projections of the execution of Java programs,
e.g. when different threads are running.

I’m not aware of much prior research on abstract program
visualization for user interfaces, although I still need to do
a fuller literature review. UI performance analysis tools or
debuggers like the Redux Dev Tools arguably fit into this cate-
gory, but there aren’t many tools that employ data visualization
techniques to display the internal state of the application.

Hoffswell et al propose a system for visualizing runtime state
inside Vega data visualizations [5]. That work fits into the
category of visualizing state next to source code lines, but by
integrating with a very high level domain-specific language,
achieves more abstraction than visualization systems for gen-
eral languages like Python. They also propose a design space
for visualizations embedded in source code, which I plan to
build on in this work.

VISUALIZATION DESIGN

Use cases
I had some prior experience with the Redux Dev Tools debug-
ger, which provides the ability to inspect application state in
Redux applications. From this personal experience, I identified
two distinct use cases for a runtime visualization:

• Localizing within a trace: Where do I need to rewind to, in
order to inspect a particularly relevant point in an execution
trace? This is most often helpful when debugging a par-
ticular problem. Scrubbing back and forth while watching

the UI change is often workable, but it’s inefficient. Also,
sometimes the relevant state isn’t directly visible in the UI,
so I need to dig into a JSON object at each point in time to
understand whether I’ve found the right point in the trace.

• Generally understanding program behavior over time:
Overall, what happened as I interacted with the program?
Sometimes I’m not debugging a particular problem, and
I’m more interested in just seeing general information about
how a program is behaving over time. For example, this
is helpful when explaining the system’s behavior to a new
programmer who’s preparing to work on the system, or
when I’m trying to learn the basics of a codebase myself.

These two goals partially overlap, but can also lead in different
design directions. For example, localizing a specific point in
a trace can benefit from a more active interrogatory approach
(e.g. as explored in the Whyline system [8]), but general pro-
gram understanding might benefit from a more passive style,
more akin to reading documentation but accompanied by live
demonstrations.

Data structures
Many concrete and low-level program visualizations focus on
showing primitive values, especially numeric values. However,
the state of an arbitrary MVU application often contains com-
plex nested data structures, which contain many non-numeric
values: booleans, strings, and enum values. One challenge
for this system is to find ways to visualize these types of
structures.

Context: TodoMVC
In order to focus my effort on concretely understanding the
utility of visualizations, rather than building out infrastructure,
I built a visualization system for a specific application: the
TodoMVC GUI benchmark. TodoMVC is a basic todo list UI
where the user can add, edit, delete, and complete todos. The
user can also filter the list of todos shown to either active or
completed ones.

The Redux implementation of TodoMVC stores an app state
object which contains the list of todos, and the current state
of the visibility filter. There are actions corresponding to each
of the main user interactions listed above, e.g. “add todo” and
“set visibility filter”. Importantly, the Redux events capture an
abstract, semantically meaningful picture of the user’s inter-
actions: when adding a new todo, the user’s keystrokes are
collected in the local state of a React component, and only a
single “add todo” event is triggered in Redux once the user
finally adds the new todo.

Overall layout
My initial idea, as shown in Figure 1, was to show the current
state of the application as a nested JSON tree, and then to show
small sparkline-style visualizations next to nodes of the tree.
This design draws some inspiration from [5], but differs in
that it uses visualization to annotate the application’s state tree,
rather than its source code. The advantage of this design is that
it closely and directly links the current state to data from the
execution history, but that link also causes thorny problems—
for example, how do you deal with nodes that have disappeared

Figure 1. JSON tree with inline sparklines

Figure 2. Timeline view of stacked visualizations

from the current state? Perhaps more concerningly, by tying
the visualization to the concrete current state, it limits the
ability of the programmer to create a customized abstract view,
removed from the details of the state.

In my next iteration I switched to a different layout, shown
in Figure 2: a vertically stacked list of small visualizations of
state over time. Each visualization can display an arbitrary
projection of the app’s Redux state. Because the graphs are
horizontally aligned, it’s easy to see how different aspects of
the app’s state have changed in relation to each other. While
I haven’t implemented this yet, I imagine that programmers
would be able to dynamically add visualizations to this list,
specifying useful projections of app state, and deciding what
type of visualization to use for each projection.

One thing lost in the timeline view is the concrete view of
the app’s entire state. It’s still useful to see this, so I added a
separate panel which displays that data. The user can scrub
through history in the timeline, “pin” the app state at a particu-
lar point in time, and then use the separate state view to drill
into the app’s concrete state at that point.

Visualization Types
Here I describe the specific visualizations I prototyped for the
timeline view. These are shown in Figure 2 from top to bottom.
(The video demo linked on the project page might be an easier
way to grasp the basics of each of these views)

Action list: I found that skimming a list of actions repre-
sented as text (ADD_TODO, EDIT_TODO, etc.) required a lot
of conscious reading effort. Instead, by choosing a colorful
symbol for each action in the app, we can take advantage of
pre-attentive processing to more quickly understand what ac-
tions have occurred in the execution trace. In this case I chose
symbols for all the actions in TodoMVC; more generally, a
programmer could specify a meaningful symbol for every ac-
tion in their application. In some cases it might be difficult
to choose meaningful and different symbols for all actions;
falling back to random symbols or colored dots could work
as well. In using this tool I’ve found that the symbolic action
list makes it far easier to find a point in an execution trace that
I’m looking for.

Collection graph: This visualization represents the contents of
a collection with a series of vertically stacked dots. The size
of the cluster of dots provides a rough sense of collection size,
and the programmer can more carefully examine the view to
get an exact count.

Each dot has a color encoding for some attribute of the col-
lection element; in this case I’ve chosen to color the dots by
whether the todo is completed or not. Another available option
is to color the dots by identity—each unique element gets its
own color.

I originally represented the list of todos with a line graph show-
ing its length, but this view allows us to display an additional
dimension of information for each todo. One corresponding
weakness of this view is that the size encoding doesn’t offer
too much information for pre-attentive processing when there
are more than a few elements so the relative size change is
small. It’s not immediately obvious where in the trace the
number of todos changed, whereas a line graph makes it more
obvious. (One possible improvement would be to only show
the dots on a time step where the collection was changed.)

Line graph: This is simply a line graph of some numeric
quantity over time. In this context I’ve used it to visualize
quantities like “Number of todos visible”. Choosing a y-axis
is quite tricky because the full range of values can’t be known
in advance. In trying out different options and using the tool
myself, I decided that viewing relative changes over time was
most important—generally I’m looking for things like “when
did the number of todos go down?”. Therefore, I let each graph
scale to the current range of values and don’t even show a y-
axis label—I’m not aiming to precisely read numeric values
off the graph.

Enum graph: User interfaces commonly have enums / union
types, which can take on a small number of predefined values.
To represent enum values changing over time, I chose to use
both a color and position encoding, as a way of redundantly
encoding the information and .

With more time, I’d like to explore many other types of vi-
sualizations in addition to these. One particular interest is
displaying the entire state of a collection of objects in a single
graph.

Prototype Implementation
I implemented a working prototype on top of the existing
Redux Dev Tools, which provides substantial infrastructure
for inspecting and manipulating the state of a Redux applica-
tion. My tool is implemented as a Redux Dev Tools “monitor”
which can plug in to those existing APIs.

I used the React and Redux frameworks to implement the main
skeleton of my system. The graphs are built in a combination
of d3 and React. I use d3 for computing scales and positions,
and then React for actually rendering out SVGs.

Discussion and Future Work
This work is still an early prototype and there are many oppor-
tunities for future work.

Using this system myself, I found that I was able to more
quickly get an overall sense of what happened in an execu-
tion trace by looking at these visualizations than looking at
the existing Redux Dev Tools display. However, I want to
gain a clearer understanding of what questions people have
when learning about the behavior of a UI, in order to evalu-
ate the usefulness of the system. In particular, I’m curious
about general “program understanding” as opposed to targeted
debugging. Could this visualization be a useful aid when on-
boarding someone into a codebase and teaching them how it
works?

There’s lots of future work to refine the core visualizations
further. I haven’t yet explored visualizing a complex object in
a single graph, or showing strings changing over time. I’d also
like to more clearly incorporate Hoffswell et al’s taxonomy [5]
into this work, evaluating these visualizations in those terms
and explicitly extending that taxonomy.

Another area of work is generalizing this system to work with
any Redux application. I’d like to explore the programmer
experience of creating these visualizations for an existing com-
plex application. How much of that process can be automated?
How can we make it easy for the programmer to decide which
visualizations would be helpful, and then to actually specify
those visualizations? As an initial idea, I imagine that the
programmer could specify an arbitrary expression over the
Redux state,choose from a predefined list of visualizations for
showing the output of that expression, and then add that to the
timeline panel in this tool.

Program visualization offers a rich set of possibilities for help-
ing people understand their code better. In this work, I’ve
provided an initial prototype of a system for visualizing the
runtime state of Model-View-Update user interfaces, exploit-
ing the natural architecture of these applications to show an
abstract picture of code execution over time.

References
[1] Marc H. Brown and Robert Sedgewick. “A System

for Algorithm Animation”. In: Proceedings of the 11th
Annual Conference on Computer Graphics and Interac-
tive Techniques. SIGGRAPH ’84. New York, NY, USA:
Association for Computing Machinery, Jan. 1, 1984,
pp. 177–186. ISBN: 978-0-89791-138-2. DOI: 10.1145/

800031.808596. URL: http://doi.org/10.1145/800031.
808596 (visited on 05/11/2020).

[2] Evan Czaplicki. The Elm Architecture · An Introduc-
tion to Elm. URL: https : / / guide . elm - lang . org /
architecture/ (visited on 05/11/2020).

[3] Simon Fowler. “Model-View-Update-Communicate:
Session Types Meet the Elm Architecture”. In: (Jan. 13,
2020). arXiv: 1910.11108 [cs]. URL: http://arxiv.org/
abs/1910.11108 (visited on 05/11/2020).

[4] Philip J. Guo. “Online Python Tutor: Embeddable Web-
Based Program Visualization for Cs Education”. In:
Proceeding of the 44th ACM Technical Symposium on
Computer Science Education. SIGCSE ’13. Denver,
Colorado, USA: Association for Computing Machinery,
Mar. 6, 2013, pp. 579–584. ISBN: 978-1-4503-1868-6.
DOI: 10.1145/2445196.2445368. URL: http://doi.org/10.
1145/2445196.2445368 (visited on 05/12/2020).

[5] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer.
“Augmenting Code with In Situ Visualizations to Aid
Program Understanding”. In: Proceedings of the 2018
CHI Conference on Human Factors in Computing Sys-
tems. CHI ’18. Montreal QC, Canada: Association for
Computing Machinery, Apr. 21, 2018, pp. 1–12. ISBN:
978-1-4503-5620-6. DOI: 10 . 1145 / 3173574 . 3174106.
URL: http://doi.org/10.1145/3173574.3174106 (vis-
ited on 05/11/2020).

[6] Hyeonsu Kang and Philip J. Guo. “Omnicode: A
Novice-Oriented Live Programming Environment with
Always-On Run-Time Value Visualizations”. In: Pro-
ceedings of the 30th Annual ACM Symposium on User
Interface Software and Technology. UIST ’17: The
30th Annual ACM Symposium on User Interface Soft-
ware and Technology. Québec City QC Canada: ACM,
Oct. 20, 2017, pp. 737–745. ISBN: 978-1-4503-4981-
9. DOI: 10.1145/3126594.3126632. URL: https://dl.
acm . org / doi / 10 . 1145 / 3126594 . 3126632 (visited on
05/07/2020).

[7] Saketh Ram Kasibatla. “Seymour: A Live Programming
Environment for the Classroom”. UCLA, 2018. URL:
https://escholarship.org/uc/item/8gx5x6kj (visited on
05/13/2020).

[8] Andrew J. Ko and Brad A. Myers. “Designing the Why-
line: A Debugging Interface for Asking Questions about
Program Behavior”. In: Proceedings of the 2004 Con-
ference on Human Factors in Computing Systems -
CHI ’04. The 2004 Conference. Vienna, Austria: ACM
Press, 2004, pp. 151–158. ISBN: 978-1-58113-702-6.
DOI: 10 . 1145 / 985692 . 985712. URL: http : / / portal .
acm.org/citation.cfm?doid=985692.985712 (visited on
05/07/2020).

[9] Sorin Lerner. “Projection Boxes: On-the-Fly Reconfig-
urable Visualization for Live Programming”. In: Pro-
ceedings of the 2020 CHI Conference on Human Fac-
tors in Computing Systems. Association for Computing
Machinery, 2020. DOI: 10.1145/3313831.3376494.

https://doi.org/10.1145/800031.808596
https://doi.org/10.1145/800031.808596
http://doi.org/10.1145/800031.808596
http://doi.org/10.1145/800031.808596
https://guide.elm-lang.org/architecture/
https://guide.elm-lang.org/architecture/
https://arxiv.org/abs/1910.11108
http://arxiv.org/abs/1910.11108
http://arxiv.org/abs/1910.11108
https://doi.org/10.1145/2445196.2445368
http://doi.org/10.1145/2445196.2445368
http://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/3173574.3174106
http://doi.org/10.1145/3173574.3174106
https://doi.org/10.1145/3126594.3126632
https://dl.acm.org/doi/10.1145/3126594.3126632
https://dl.acm.org/doi/10.1145/3126594.3126632
https://escholarship.org/uc/item/8gx5x6kj
https://doi.org/10.1145/985692.985712
http://portal.acm.org/citation.cfm?doid=985692.985712
http://portal.acm.org/citation.cfm?doid=985692.985712
https://doi.org/10.1145/3313831.3376494

[10] Tom Lieber, Joel R. Brandt, and Rob C. Miller. “Ad-
dressing Misconceptions about Code with Always-
on Programming Visualizations”. In: Proceedings of
the 32nd Annual ACM Conference on Human Factors
in Computing Systems - CHI ’14. The 32nd Annual
ACM Conference. Toronto, Ontario, Canada: ACM
Press, 2014, pp. 2481–2490. ISBN: 978-1-4503-2473-1.
DOI: 10.1145/2556288.2557409. URL: http://dl.acm.
org / citation . cfm ? doid = 2556288 . 2557409 (visited on
05/11/2020).

[11] Josh Pollock et al. “Theia: Automatically Generating
Correct Program State Visualizations”. In: Proceedings
of the 2019 ACM SIGPLAN Symposium on SPLASH-E
- SPLASH-E 2019. The 2019 ACM SIGPLAN Sym-
posium. Athens, Greece: ACM Press, 2019, pp. 46–
56. ISBN: 978-1-4503-6989-3. DOI: 10.1145/3358711.
3361625. URL: http://dl.acm.org/citation.cfm?doid=
3358711.3361625 (visited on 01/28/2020).

[12] Redux - A Predictable State Container for JavaScript
Apps. | Redux. URL: https://redux.js.org/ (visited on
05/13/2020).

[13] Steven P. Reiss. “JIVE: Visualizing Java in Action
Demonstration Description”. In: Proceedings of the

25th International Conference on Software Engineering.
ICSE ’03. Portland, Oregon: IEEE Computer Society,
May 3, 2003, pp. 820–821. ISBN: 978-0-7695-1877-0.

[14] Steven P. Reiss. “Visual Representations of Executing
Programs”. In: J. Vis. Lang. Comput. (2007). DOI: 10.
1016/j.jvlc.2007.01.003.

[15] Steven P. Reiss and Manos Renieris. “Jove: Java as It
Happens”. In: Proceedings of the 2005 ACM Symposium
on Software Visualization - SoftVis ’05. The 2005 ACM
Symposium. St. Louis, Missouri: ACM Press, 2005,
p. 115. ISBN: 978-1-59593-073-6. DOI: 10.1145/1056018.
1056034. URL: http://portal.acm.org/citation.cfm?
doid=1056018.1056034 (visited on 05/11/2020).

[16] John T. Stasko. “Tango: A Framework and System for
Algorithm Animation”. In: Computer 23.9 (Sept. 1,
1990), pp. 27–39. ISSN: 0018-9162. DOI: 10.1109/2.
58216. URL: http://doi.org/10.1109/2.58216 (visited on
05/11/2020).

[17] Bret Victor. Learnable Programming. URL: http :
/ / worrydream . com / LearnableProgramming/ (visited on
04/28/2020).

https://doi.org/10.1145/2556288.2557409
http://dl.acm.org/citation.cfm?doid=2556288.2557409
http://dl.acm.org/citation.cfm?doid=2556288.2557409
https://doi.org/10.1145/3358711.3361625
https://doi.org/10.1145/3358711.3361625
http://dl.acm.org/citation.cfm?doid=3358711.3361625
http://dl.acm.org/citation.cfm?doid=3358711.3361625
https://redux.js.org/
https://doi.org/10.1016/j.jvlc.2007.01.003
https://doi.org/10.1016/j.jvlc.2007.01.003
https://doi.org/10.1145/1056018.1056034
https://doi.org/10.1145/1056018.1056034
http://portal.acm.org/citation.cfm?doid=1056018.1056034
http://portal.acm.org/citation.cfm?doid=1056018.1056034
https://doi.org/10.1109/2.58216
https://doi.org/10.1109/2.58216
http://doi.org/10.1109/2.58216
http://worrydream.com/LearnableProgramming/
http://worrydream.com/LearnableProgramming/

	Introduction
	Related Work
	Visualization design
	Use cases
	Data structures
	Context: TodoMVC
	Overall layout
	Visualization Types
	Prototype Implementation
	Discussion and Future Work

