
Using a sonar ranging system to enable a
quadrotor helicopter to follow a wall

Geoffrey Litt
Class of 2014

B.S. Candidate, EECS

December 21, 2012

EENG 471 - Independent Project
Group project with Caroline Jaffe ’13

Prof. Roman Kuc
Yale University

Abstract

In this project, a sonar ranging sensor attached to a servo was mounted
on a Parrot AR.Drone 2.0 quad-rotor helicopter, allowing the quadcopter
to detect its distance from a wall and move back and forwards while
maintaining a relatively constant distance from the wall. The final system
was capable of tracking a wall within a tolerance band of approximately
1 meter, although the inherent instability of the flying system made it
difficult to achieve completely reliable operation.

1

1 Introduction

1.1 Overview
The Parrot AR.Drone 2.0 is a technologically sophisticated quad-rotor heli-
copter (a.k.a. "quadcopter" or "drone"), with advanced capabilities like an
internal gyroscopic stabilization system, altitude measurement using sonar, and
two onboard cameras. This range of capabilities makes it potentially useful for
a wide range of activities such as remote camera monitoring, transportation of
light payloads, etc. However, one major limitation of the system is that it lacks
an obstacle avoidance system. If movement commands are sent to the drone
without a feedback loop, it could crash into obstacles at any time, defeating the
usefulness of any autonomous operation. Therefore, a sensing system for the
drone that detects objects in the environment and automatically applies correc-
tions to movement controls could enable a whole host of other applications.

Figure 1: The completed drone system

We created a system to achieve a basic demonstration of this goal, by fol-
lowing a wall at a constant distance. The finished system is shown in Figure
1. we mounted a sonar sensor on a servo, and attached this sensing system to
the drone. The system uses an Arduino Pro microcontroller to move the servo
back and forth and drive the sonar at regular intervals, relaying back the sonar
readings wirelessly to a computer. The computer processes the sonar echo time
readings to determine the distance and orientation of the drone relative to the
wall, and it issues appropriate movement commands to the drone so that the
drone moves back and forth within several meters of the wall, without actually
colliding with it. As discussed in more detail later, this capability could serve
as a useful part of a more full-featured autonomous movement system.

2

1.2 Specifications
The main design goal for the project was to keep the drone at a fixed distance
from the wall (within a certain tolerance band, as narrow as possible), so that
it would neither collide with the wall nor move too far away. In the course of
completing the project, we determined that a reasonably feasible goal was to
keep the drone within 0 to 2 meters of the wall.

Achieving this goal required satisfying a number of prerequisite goals. First
of all, the drone obviously had to be able to fly successfully. This proved to
be a difficult specification to meet, since the drone’s maximum payload weight
was relatively small. Battery-powered operation was also a desired goal for the
system so it could be used in any location, but this goal turned out to conflict
with the weight reduction goal, and the final system was powered through a
cable by a power supply.

It was also necessary to build a fast and accurate sensing system to enable
the drone to follow the wall successfully. In testing our servo rotation code, we
experienced a tradeoff between the speed of moving the servo and the accuracy
with which the servo would move to a given angle – as we reduced the delay
between servo positions, we observed increased discrepancies between readings
taken as the servo was moving in one direction or the other. (We were unable
to determine exactly the cause of this effect; it may have been related to the
mechanical break frequency of the servo, or the way we attached the sonar
to the servo.) We determined that 750ms was an appropriate length of time
for a single scan in one direction – we would also send the drone a movement
command after each of these single scans.

As for the accuracy of the sonar measurements, the sensors that we used
were very precise, and we did not even require the full precision of the sensors
for our project (upon receiving echo delay time readings in microseconds, we
divided by 100 to discard the last two significant digits before processing, in
order to make it easier for us to conceptualize readings without worrying about
unimportant noise). However, although individual readings from the sensors
were precise, we did have to consider noise that could arise from various errors
in the servo’s movement, or small features in the environment that could cause
misleading sonar readings. It was necessary to smooth out this noise in software
to some extent, to achieve stable operation.

Finally, reliable wireless communication with the drone was essential for
successful operation of the system. Any dropping out of the wireless links used
to send sensing data or control commands could lead to dangerous conditions,
since it would prevent the drone from effectively avoiding the wall.

2 Methods

2.1 Equipment
• Parrot AR.Drone 2.0 quadcopter

3

• Dell Inspiron laptop running Ubuntu Linux

• Arduino Pro microcontroller

• micro servo, 150-degree range

• Senscomp 6500 ultrasonic ranging module

• Senscomp Instrument Grade transducer

• 2 x XBee Series 1 wireless communication module

• 2 x DC power supply

• USB-FTDI cable (for connecting to XBees, Arduino)

2.2 Design Philosophy
To preface a discussion of the detailed techniques used to design the system,
there were a range of high-level design considerations we took into account
when creating the system.

Originally, the plan for the project was to follow objects, processing images
received from the cameras built into the drone. We decided to switch to the
sonar sensing project we ended up completing for several reasons. First, it
had proved technically difficult to access the video stream from the drone. In
addition, we thought that the sonar approach could prove more extensible to a
variety of applications related to autonomous movement and obstacle avoidance.
Finally, adding our own sensing hardware to the drone presented a variety of
interesting challenges from an electrical and mechnical engineering standpoint.

As a result, we generally made attempts to design the system in such a way
that it could be easily extended to other applications. For example, we could
have used a statically mounted vergence sensor, but we instead chose to mount a
sonar sensor on a rotating servo to sweep over a wide angle and provide multiple
scan data points. This added complexity to the system, but could enable the
same hardware to be used for other applications with changes to the control
software.

Another high level design consideration was designing for rapid iteration
and failure. Because of the instability of the drone, small hardware changes
could have large effects on the system’s performance. We therefore avoided
permanent hardware decisions as much as possible, allowing room for on-the-fly
modifications to improve stability. This need was aggravated by the fact that
the drone would often crash during testing, causing hardware elements to be
dislodged. If we had had more time, it could have proved beneficial to design
a robust enclosure and finalize a permanent hardware setup; however, we were
changing components frequently enough that this was not feasible with our time
constraints.

We took an empirically driven approach to the design process. We attempted
to test components of the system independently and calibrate them based on

4

real observation, so that we would not end up building an entire system that
worked hypothetically but not in practice.

2.3 Architecture
It may be helpful to provide an overview of the high-level architecture of the
system before describing details. The system consists of two main sections – the
custom hardware mounted on the drone, and a Linux laptop running software.

The custom hardware on the drone is controlled by an Arduino microcon-
troller, and activates the sonar sensor at various angles. It then receives echo
time readings at various angles, and prints these readings in a standardized pro-
tocol over a serial connection to an XBee wireless device. The drone-mounted
hardware is only there for sensing, and does not directly control the drone in
any way.

The Linux laptop is connected to aWiFi network broadcasted by the AR.Drone,
which enables it to send movement commands to the drone using an API pro-
vided by Parrot. It is also connected to an XBee wireless device with a USB
FTDI cable, and receives sensor readings over this connection. The laptop runs
a program written by us which takes in the sensor readings, computes the ap-
propriate corresponding movement commands, and hooks into the AR.Drone
API to send these commands.

2.4 Sensing Hardware

Figure 2: The sensing hardware

The sensing hardware setup we created is shown in Figure 2. The main com-
ponents are the Arduino Pro microcontroller (at the right in Figure 2, two
ultrasonic ranging modules (visible at the left of the image – one is a relic of an

5

older setup with two sonars, and is not used), a micro servo (in the center of the
image, embedded in the white foamcore board), a sonar transducer mounted on
a column on top of the servo, and an auxiliary board connecting all the compo-
nents (mounted on top of the Arduino board on the right). The auxiliary board
is also connected to the drone’s 5 volt power cable.

Schematic

The electrical connections between the sensing components can be seen in the
schematic, in Appendix A. As a summary: the auxiliary board distributes 5
volt power from the power cable to the Arduino, sonar module, servo, and XBee
module. The 5 volt source also provides a pullup voltage source for the echo line
from the sonar module. The Arduino has a digital output pin connected to the
sonar module INIT, a digital input pin connected to the sonar module ECHO
(with a pullup resistor), a digital output pin connected to the servo control pin,
and serial Tx/Rx to the XBee module.

Hardware platform

All of the sensing components are mounted onto a foamcore board, which is
attached to the drone with four vertical rectangular supports also made of foam-
core, glued onto the side of the drone. Foamcore was chosen as the material for
the supporting platform because it is extremely lightweight and weight was a
major concern. The column supporting the sonar is made of foamcore and at-
tached to the servo with a small balsa wood platform and glue; the servo is then
mounted in a hole in the foamcore board and glued on. The other components
were all attached to the board with tape and glue.

Arduino

The Arduino microcontroller used to control the sensing hardware is an Arduino
Pro 328, which is a 3.3V, 8Mhz microcontroller based on the ATmega328 chip.
We originally started out using an Arduino Uno, which is a more commonly
used 5V board, but it was too heavy. The Arduino Pro is a significantly lighter
board based on surface mount components, with no onboard USB connector or
headers on pins.

The code executed on the Arduino can be seen in Appendix B. It is an
extremely simple program. All the main program loop does is rotate the servo
back and forth by a set increment (approx. 15 degrees), and send out a sonar
pulse at each servo position. To send a sonar pulse, the sonar INIT line is set
high for 20ms and low for 30ms. As a result, the servo was at each position in
its rotation for 50ms, resulting in a sweep lasting approximately 750ms. Also,
the time at which the sonar is initiated is recorded so that the time to echo can
be calculated later.

To report sonar readings, an external interrupt was used. A handler function
"handleEcho" was associated with a rising external interrupt on the sonar echo

6

Figure 3: Arduino, auxiliary board and XBee module

pin, so that it would be triggered every time an echo was received. The handler
function essentially records the time difference between the sonar init and echo,
and prints this time in microseconds, along with the current servo angle, to the
serial connection it has with the XBee (in the format "angle:time"). However,
there is a slight degree of added complexity in the program which was added to
prevent errors – if multiple different echo times are reported for a given servo
angle, only the last one will be reported. This error correction was added to
deal with an error where a very fast echo would be reported before the real echo.

Servo

The servo used on the final system is a generic "micro servo" with a total range
of rotation of approximately 150 degrees. We experimentally determined the
maximum and minimum values we could use as the duty cycle to the servo to
be 750us and 2200us respectively. The Arduino Servo library handled setting
the period of the communication to the servo, so we only had to set the high
time per cycle.

After our original micro servo failed in a crash, we switched to the one used
in our final system, which seemed to have some problems moving to various
positions accurately.

Sonar

A Senscomp 6500 ultrasonic ranging module board was used to power the sonar
transducer. This board receives a signal from the Arduino board, and creates a
ping on the transducer by sending roughly 16 high-low transitions between +200
and -200 volts at 50kHz. The resulting sonar chirp travels outwards at the speed
of sound, and the echo of the sound bounces off any objects and is detected by

7

the transducer. When the echo is received it pulls down a line connected to the
Arduino, and the appropriate reading is recorded by the Arduino.

XBee wireless module

Wireless transmission of sonar readings to the computer base station was achieved
using XBee Series 1 modules. The XBee modules use the IEEE 802.15.4 net-
working protocol to create a virtual serial link over a 2.4Ghz wireless connection.
The XBees were configured to communicate at 9600 bps, with the 8N1 serial
configuration – 8 data bits, no parity bit, and one stop bit. This speed proved
more than fast enough to transfer all the data necessary, because we were only
transmitting less than 2000bps (approx. 20 readings per second x approx. 8
chars per line x 8 bits per char = 1280bps). No parity was necessary because
the XBee modules have built-in error correction, which was very useful for es-
tablishing a reliable serial link for our project.

3 Control software

3.1 Overview
The control software running on the Linux laptop serves a simple purpose at
a high level – it takes sonar readings at various readings as an input, and
based on these readings, it produces a movement command for the drone at
regular intervals. The drone can be controlled by changing the front-back angle
("pitch"), left-right angle ("roll"), rotational angle about a vertical axis ("yaw"),
and vertical speed. Because we were not concerned with vertical speed in this
project, the program had to produce values for the first three parameters and
send them to the drone. All the code is available in Appendix C

3.2 AR.Drone SDK
Our control software relied heavily on the AR.Drone SDK, provided by Parrot,
the manufacturer of the quadcopter. The SDK, written in C, provides vari-
ous functions which can be used to control the drone over a WiFi connection.
To use the SDK, we created (using a special macro provided by the SDK) a
thread named "mythread" in a file that previously contained a demo program,
and registered the thread to be executed in parallel with other code in the
SDK which manages communication with the drone. Thus, all the code that
we wrote is contained in the "mythread" thread and a utility function called
ardrone_turn_tool that we wrote.

We called two functions from the SDK in our program. The first,
ardrone_tool_set_ui_pad_start, commands the drone to take off if a 1 is passed in,
and commands it to land if a 0 is passed in. The next, ardrone_at_set_progress_cmd
, takes 5 parameters. The first one is set to 1 to enable a command, and the
next four values correspond to roll, pitch, vertical speed, and yaw values. Each
of the last four parameters takes the form of a floating point value between 1.0

8

and -1.0, representing the maximum angle/speed that the drone can handle in
opposite directions. As shown in Figure 4, we used macros to represent positive
and negative values for each parameter in readable terms to make development
easier.

56 // convert drone positive/negative angles to human -readable
directions

57 #define CLOCKWISE 1
58 #define COUNTERCLOCKWISE -1
59 #define FORWARD -1
60 #define BACKWARD 1
61 #define LEFT -1
62 #define RIGHT 1
63 #define NO_TURN 0

Figure 4: Direction definitions (excerpt from Appendix C)

3.3 Control algorithm
The implementation of our control logic can be seen in Appendix C. This section
will describe what the algorithm does at a conceptual level.

Sensor data processing

The first step of the algorithm is to determine the current distance from the
wall, as well as the orientation relative to the wall, based on multiple sonar
readings at different angles. Once the sonar finishes a full 180-degree scan in
either direction, the algorithm processes all 15 readings for that scan, and finds
the minimum echo time, which is assumed to correspond to the distance from
the wall.

Finding orientation relative to the wall is slightly more involved – the scan
angle where the minimum echo time was found might not actually be the angle
that is perpendicular to the wall. This is because, rather than receive steadily
decreasing and increasing echo delays as the sonar scans across the wall, the
transducer always receives an echo from the perpendicular angle, so in fact the
echo delay remains mostly constant for several scans until the wall is out of the
angular range of the transducer. To process this effect, our algorithm works
outwards from the minimum distance scan angle, finding scans where the echo
delay was within a certain tolerance band (± 1000 us) of the minimum delay.
The range of scans that fit in this tolerance band is considered the "arc" of the
wall that is detected, and the midpoint of this arc is considered the scan angle
that is perpendicular to the wall.

This effect can be explained with some example diagnostic output from a
test run (formatting edited to fit here), shown in Figure 5:

9

1 SCAN RESULTS:
2 FRONT [71 69 113 93 64 55 48 47 46 46 49 56 59] BACK
3 FRONT [******* MMMM ***********] BACK
4 arc_start: 5, arc_end: 10, arc_mid: 7

Figure 5: Diagnostic output showing an arc

Here, the numbers are echo delay readings, with the last two digits of a
microsecond value truncated (e.g. 71 means betwen 7100 and 7200 us). The
minimum reading of 46 was detected on the scans with indices 8 and 9 (starting
from the left with zero-indexing), but the middle of the arc was detected to be
index 7, so the angle corresponding to index 7, not 8 or 9, is considered the
angle which is perpendicular to the wall.

Computing roll angle

Two pieces of data are used to compute the roll angle to send to the drone:
the current minimum distance to the wall, and the previous minimum distance,
one scan ago. This information is used along with the calibration parameters in
Figure 6 to calculate the roll angle.

51 #define LOW_THRESH 45 //*100 = minimum distance to wall in us
52 #define HIGH_THRESH 55 //*100 = maximum distance to wall in us

69 #define ROLL_MAX 0.08 //max roll angle
70 #define MAX_HORIZ_VELOCITY 20 // moving this *100 us towards/away

from the wall in 1 scan
71 //will result in ROLL_CORRECT_MAX

correction being applied
72 #define ROLL_CORRECT_MAX 0.08 // maximum correction by roll

correction

Figure 6: Roll value calibration parameters (excerpt from Appendix C)

First, the algorithm uses the current distance from the wall to compensate
for being too close to, or too far from, the wall. The high and low thresholds
defined in the calibration parameters define a sort of band – inside this band, a
linear control rule applies where the drone rolls more towards the center of the
band if it is farther from the center; outside the band, the roll angle is limited
to a maximum value. The maximum roll value is also defined in the calibration
parameters. This control rule is visualized in Figure 7.

10

Figure 7: Roll angle control

To implement the control rule, the program calculates a coefficient that is
essentially the slope of the middle part of the diagram – a number that multiplies
a microsecond value to get a roll angle value, such that the angle value is plus
or minus ROLL_MAX at LOW_THRESH and HIGH_THRESH. It multiplies
this coefficient by the difference between the current distance from the wall and
the ideal distance from the wall (halfway between the low and high thresholds),
and then limits the value within ±ROLL_MAX. The code that implements this
is shown in Figure 8.

410 roll = (ideal_distance - min) *
roll_coefficient; // ideal_dist - min
gives a negative #, appropriately

411
412 //limit roll within roll_max
413 if(roll < (-1 * ROLL_MAX)){
414 roll = -1 * ROLL_MAX;
415 }
416 else if (roll > ROLL_MAX){
417 roll = ROLL_MAX;
418 }

Figure 8: Roll value calculation part 1 (excerpt from Appendix C)

11

Computing roll correction

However, in testing, the roll angle control rule above was not sufficient to create
stable behavior. The drone would gain momentum, and even if the roll angle
was set to 0 once the drone was at the ideal distance from the wall, momentum
from its previous roll angle would keep it moving. As a result, it was necessary
to add some compensation for this effect, and have the drone roll slightly in the
opposite direction of its movement. Figure 9 shows the calibration parameters
and code used for this compensation.

70 #define MAX_HORIZ_VELOCITY 20 // moving this *100 us towards/away
from the wall in 1 scan

71 //will result in ROLL_CORRECT_MAX
correction being applied

72 #define ROLL_CORRECT_MAX 0.08 // maximum correction by roll
correction

424 roll_correct = (old_min - min) *
roll_correct_coef;

425 if(roll_correct > (ROLL_CORRECT_MAX
)) roll_correct =
ROLL_CORRECT_MAX;

426 if(roll_correct < (-1 *
ROLL_CORRECT_MAX)) roll_correct
= -1 * ROLL_CORRECT_MAX;

427 fprintf(stderr , "roll correction: %
f\n", roll_correct);

428 roll += roll_correct;

Figure 9: Roll value calculation part 2 (excerpt from Appendix C)

The code computes an approximation of the speed at which the drone is
moving by subtracting the current distance from the wall from the distance one
scan (approximately 750ms) ago. It then multiplies this speed by a coefficient,
which is calculated to cause ROLL_CORRECT_MAX roll angle correction for
a movement of (MAX_HORIZ_VELOCITY × 100) us in one scan. The roll
angle correction is limited to ROLL_CORRECT_MAX, even for movement
greater than that maximum horizontal velocity. Then, the roll angle correction
is added to the roll angle computed in the previous step, to compute a final roll
angle that is sent to the drone.

By having the drone attempt to slow its movement relative to the wall, the
system achieves much more stable operation. Even if the drone is farther than
the ideal distance to the wall, if it is moving very quickly towards the wall,
it might not roll at all towards the wall (and might even roll away), because
of the roll correction code. In our testing, we saw a noticeable improvement in
performance with this additino. It was especially noticeable when the drone was
approaching the wall rapidly – it was able to turn away from the wall aggressively

12

(a combination of the roll angle calculation and the movement correction both
acting), in a way that would not have been appropriate if it was not moving
towards the wall.

Computing rotational speed

The control algorithm also needs to consider the rotational angle of the drone
relative to the wall. If the drone is not parallel to the wall, then any forward or
back movement inherently causes it to move towards or away from the wall, so
it is imperative that it remain parallel to the wall for stable operation.

We defined a range of indices in the array of scan readings (the "box"), which
we considered to be acceptable values for the scan angle which is perpendicular
to the wall (as explained previously, this angle is the midpoint of the "arc" that
represents the wall). If the arc midpoint is in this range of scan readings (we
defined it as index 5-9 based on testing), the rotational speed is set to zero. In
other words, this is a deadband for the rotational speed of the drone. If the arc
midpoint is outside the "box", then the appropriate correction is applied with
a rotational speed. If the arc midpoint is too far towards the front of the drone,
this means the nose of the drone is pointing towards the wall and it needs to
turn clockwise. The opposite applies if the arc midpoint is too far towards the
back of the drone. The rotational speed is a constant corresponding to a slow
rotation – due to the relative imprecision of measuring the orientation of the
drone, we did not find value in using any more sophisticated control rule. This
control rule is visualized in Figure 10.

Figure 10: Rotational speed control

13

The code in Figure 11 shows the calibration parameter for rotational speed,
as well as the code that implements the control rule.

53 #define BOX_START 5 //index in array where deadband for yaw begins
-- compensate for asymmetric servo

54 #define BOX_END 9 //index in array where deadband for yaw ends

66 #define YAW_VAL 0.25 //turn speed

396 if (arc_mid > BOX_END) { //front of drone
pointed away from wall

397 fprintf(stderr , "OUTTA THE BOX YO ,
front pointed TOWARDS WALL!\n")
;

398 yaw = CLOCKWISE;
399 }
400 else if (arc_mid < BOX_START) { //front of

drone pointed towards wall
401 fprintf(stderr , "OUTTA THE BOX YO ,

front pointed AWAY FROM WALL!\n
");

402 yaw = COUNTERCLOCKWISE;
403 }
404 else {
405 fprintf(stderr , "GOOD ANGLE , DO NOT

TURN\n");
406 yaw = NO_TURN;
407 }

Figure 11: Rotational speed calculation (excerpt from Appendix C)

Other simple control

There are several other control steps in our program unrelated to the main
control algorithm. The drone takes off at the beginning of the program, and
alternates between forwards and backwards movement regularly after a certain
number of scans in each direction (defined by us as 10 scans, or about 8 seconds).
It then lands after a certain number of direction switches (7 in our program).
These parameters can be changed for different durations of demos, and different
wall lengths.

4 Results
Our final system performs relatively well, achieving our goal of staying within
0 to 2 meters of the wall about 75% of the time. This is the result of extensive
calibration to determine control parameters that would lead to stable operation.
Due to weight constraints we could not meet our original goal of flying the drone

14

with its original battery, but the power supply solution works well, and has the
added benefit of allowing unlimited operation.

A video of the drone successfully following the wall is included in the docu-
mentation that accompanies this paper.

Failures can be caused by a large number of factors, which explains why
we consider 75% to be a relatively high success rate. We have experienced
issues such as unreliable sonar readings, unreliable servo movement, and weight
distribution problems with the drone, all of which can lead to unpredictable
behavior and sometimes crashes into the wall. In fact, we had to significantly
rebuild our system after one major crash.

5 Conclusion

5.1 Challenges and limitations
At the beginning of this project, we knew there would be significant challenges
associated with it. Having a flying platform for a project instead of a more
conventional ground-based one created a wide variety of difficulties.

Weight issues

The main problem we faced was dealing with weight – both the total weight of
the payload on the drone, as well as its distribution. We initially thought that
the drone was capable of carrying a normally constructed board of electronics,
using an Arduino Uno and several auxiliary boards, but testing revealed that
we were mistaken. We subsequently conducted controlled weight testing by
putting bolts into a cup on top of the drone, and concluded that the maximum
additional payload the drone could carry, with a battery and foam shell, was
around 54 grams. Our electronics platform originally weighted approximately
150g, and we reduced the weight to less than 110g through various weight saving
measures, but this was still far too heavy.

We tried approaching the problem by removing the 60g foam shell, but this
proved too dangerous for the drone’s propellers and led to a destructive crash
(crashes are another problem that comes along with a flying platform). As a
result, we were forced to remove the battery (which is heavier than the foam
shell), and this allowed us to lighten the craft enough for it to fly. It also
conveniently solved an issue we had experienced in our previous setup where
our linear voltage regulator converting 11V from the battery to 5V for the
electronics was overheating and failing. However, removing the battery also
raised the center of gravity of the drone (since the battery was originally below
our electronics), and caused increased instability. During testing we were forced
to constantly adjust the location of electronics, and even add small weights to
various parts of the drone, in order to even out its weight balance.

This challenge taught us to work in a resource constrained situation, which
mirrors a real-life situation where engineers have to minimize weight, size, etc.
We used a smaller microcontroller board and eliminated unnecessary boards and

15

wiring to significantly reduce weight. Creating a more robust hardware setup
with less vulnerability to crashes may have improved our ability to conduct
extensive tests on the drone.

Lack of position control

Unlike a ground-based robot with wheels, we lacked the ability to precisely
control the drone’s position and orientation. For example, even if we set all
angles to zero, the drone could still drift significantly, based on its previous
momentum, air currents, and other factors. This caused significant issues in
stability which we had to deal with. Adding code to our control algorithm to
compensate for the current direction of movement was the most effective thing
we did to combat this problem. Any control algorithm for a quadcopter platform
must take into account the lack of stable position control as a fundamental
principle.

Noise

Our control algorithm had to be relatively resilient against random noise and
sensor failures. We did not have to worry about a single sonar reading being
slightly off, because we discarded some of the precision of the readings anyway.
However, we did have to worry about a single reading being an outlier because of
a small detail in the geometry of the wall and surrounding area. For example,
if the drone was too far away from the wall and a single reading mistakenly
reported it as close to the wall, it would roll away from the wall, causing a
failure and even a crash.

To prevent this, we added some resistance to this type of problem in the
code, where it would only accept an "arc" if the arc was more than just a
single reading. In other words, if the minimum distance did not have a reading
on either side of it that was approximately the same within a tolerance band
(which should have never been the case for a correct reading from the wall),
then that minimum distance reading would be discarded.

We also experienced an issue where the Arduino was reporting false echoes
before reporting real echoes, and solved this by changing the Arduino code so
it would only report the last echo it received at a given servo angle. We were
unable to discover the root cause of this issue, but it probably had to do with
hardware malfunctions caused by force from hitting the ground in crashes.

SDK limitations

We had to use the AR.Drone SDK to control the drone using high level commands–
there is so much built in stabilization technology that we could not hope to con-
trol the drone’s motors individually, even if we could discover a technical way
to achieve that. Because of this dependency, we were limited by the capabilities
of the SDK.

16

For example, at one point we could not get movement commands to work,
and thought completing the project might be completely impossible. We even-
tually worked around the issue by downgrading to an older version of the SDK
which did work, but we were unable to get a video feed from the drone using
this older SDK. In addition, the SDK has relatively good documentation, but
developer support from Parrot is sparse.

In general, the strict dependency on the SDK added risk to our project, and
perhaps using an open-source quadcopter without this dependency could have
been a safer choice.

5.2 Future work
In general, the work conducted for this project could be continued in an effort
to increase stability and reliability. A more robust platform and enclosure for
the sensing hardware would have solved many of the issues we faced regarding
reliability of sensors, and resilience to crashes. For example, a plastic 3D-printed
platform which attached to the drone on the rods holding the propellers could
maintain the light weight of the foam platform we used, but add extra struc-
tual support. It would also be useful to design a protective shell around the
electronics that still exposed the sonar sensors appropriately.

In addition, the hardware setup we created could have a wide variety of
potential applications. For example it could be feasible to write software that
would move the drone along a pre-determined course, while dynamically avoid-
ing obstacles along the way. This would essentially entail sending movement
commands while never allowing the drone to get within a certain distance of an
obstacle in any direction, and calcluating strategies to get around objects.

The drone could also potentially follow some sort of target, if that target was
detectable by sonar. Another area to explore might be different kinds of sensors.
Other types of range sensors like laser rangefinders could provide benefits over
sonar (although weight is an important consideration to keep in mind). Also,
the cameras onboard the drone, as well as additional cameras, might be used
to perform image processing on the environment to discover information that
sonars and range sensors would not be able to. Because the quadcopter can
fly over objects, improvements like this might make the quadcopter useful for
autonomous surveillance, delivery of light payloads, navigation of dangerous
terrain, and other real-world applications. When a quadcopter can accurately
detect and react to its environment, the possibilities are endless. Following a
wall using sonar may be a good start.

17

Appendix

A Schematic for sensing hardware

18

B Arduino code

1 //Sonar reading code for EENG 471
2 // Caroline Jaffe and Geoffrey Litt
3
4 #include <Servo.h>
5
6 //Servo configuration parameters
7 const int SERVO_PIN = 9; //pin the servo is attached to
8 const int SERVO_MIN = 750; // minimum pulse length to servo (in us)
9 const int SERVO_MAX = 2200; // maximum pulse length to servo (in us)

10 const int SERVO_ANGLE_RANGE = 180; //total angle (deg) swept by
servo

11 const int SERVO_INCR_ANGLE = 15; //deg to move servo between
measurements

12 const int US_PER_DEGREE = (SERVO_MAX - SERVO_MIN)/SERVO_ANGLE_RANGE
;

13
14 //Sonar configuration parameters
15 const int ECHO_PIN = 2; //echo input pins for sonar 0 and 1
16 //MUST be 2 and 3 (ext. interrupt

pins on Arduino Uno)
17 const int INIT_PIN = 4;
18
19 // Global variables
20 Servo myservo; // create servo object to control a servo
21 // a maximum of eight servo objects can be created
22 unsigned long init_time;
23 int servoAngle;
24 int prev_servo_angle = 0;
25 int prev_echo_delay = 0;
26
27 void setup()
28 {
29 //setup servo
30 myservo.attach(SERVO_PIN);
31
32 //setup sonar reading
33 Serial.begin (9600);
34 pinMode(INIT_PIN , OUTPUT);
35 pinMode(ECHO_PIN , INPUT);
36 attachInterrupt (1, handleEcho , RISING);
37 }
38
39
40 void loop()
41 {
42 int pos;
43 for(servoAngle = 0; servoAngle < SERVO_ANGLE_RANGE; servoAngle

+= SERVO_INCR_ANGLE){
44 pos = SERVO_MIN + (servoAngle * US_PER_DEGREE);
45 myservo.writeMicroseconds(pos);
46 sonarPulse ();
47 }
48 for(servoAngle = SERVO_ANGLE_RANGE; servoAngle > 0; servoAngle

-= SERVO_INCR_ANGLE){
49 pos = SERVO_MIN + (servoAngle * US_PER_DEGREE);

19

50 myservo.writeMicroseconds(pos);
51 sonarPulse ();
52 }
53 }
54
55 void sonarPulse (){
56 digitalWrite(INIT_PIN , HIGH);
57 init_time = micros ();
58 delay (20);
59 digitalWrite(INIT_PIN , LOW);
60 delay (30);
61 }
62
63 void handleEcho ()
64 {
65 //only sends data once the next reading
66 //is taken at a different angle , avoids
67 // duplicate readings
68
69 long echo_delay = micros () - init_time;
70
71 if(prev_servo_angle != servoAngle){ //not a duplicate reading
72 Serial.print(prev_servo_angle);
73 Serial.print (":");
74 Serial.println(prev_echo_delay);
75 }
76 // remember these values to send
77 prev_servo_angle = servoAngle;
78 prev_echo_delay = echo_delay;
79 }

20

C Desktop code

1 /**
2 * WALLFOLLOWING DEMO
3 * EENG 471 PROJECT
4 * CAROLINE JAFFE AND GEOFFREY LITT
5
6 BASED ON SCAFFOLDING ARDRONE LIBRARY FILE BY:
7 * @file main.c
8 * @author sylvain.gaeremynck@parrot.com
9 * @date 2009/07/01

10 */
11
12 // ARDroneLib
13
14 #include <ardrone_tool/ardrone_time.h>
15 #include <ardrone_tool/Navdata/ardrone_navdata_client.h>
16 #include <ardrone_tool/Control/ardrone_control.h>
17 #include <ardrone_tool/UI/ardrone_input.h>
18
19 // Common
20 #include <config.h>
21 #include <ardrone_api.h>
22
23 // VP_SDK
24 #include <ATcodec/ATcodec_api.h>
25 #include <VP_Os/vp_os_print.h>
26 #include <VP_Api/vp_api_thread_helper.h>
27 #include <VP_Os/vp_os_signal.h>
28
29 //Local project
30 #include <UI/gamepad.h>
31 #include <Video/video_stage.h>
32
33 //our custom includes for wall -follow logic
34 #include <unistd.h>
35 #include <ardrone_testing_tool.h>
36 #include <stdlib.h>
37 #include <stdio.h>
38 #include <errno.h>
39 #include <termios.h>
40 #include <unistd.h>
41 #include <sys/types.h>
42 #include <sys/stat.h>
43 #include <fcntl.h>
44 #include <string.h>
45 #include <limits.h>
46
47 #define error_message printf
48
49 // calibrate thresholds for yaw angle and distance from wall
50 #define ARC_BAND 10 // *100*2 = width of tolerance band for arc

detection
51 #define LOW_THRESH 45 //*100 = minimum distance to wall in us
52 #define HIGH_THRESH 55 //*100 = maximum distance to wall in us
53 #define BOX_START 5 //index in array where deadband for yaw begins

-- compensate for asymmetric servo

21

54 #define BOX_END 9 //index in array where deadband for yaw ends
55
56 // convert drone positive/negative angles to human -readable

directions
57 #define CLOCKWISE 1
58 #define COUNTERCLOCKWISE -1
59 #define FORWARD -1
60 #define BACKWARD 1
61 #define LEFT -1
62 #define RIGHT 1
63 #define NO_TURN 0
64
65 // calibrate magnitude of drone movements
66 #define YAW_VAL 0.25 //turn speed
67 #define THETA_FORWARD_VAL -0.06// forward angle
68 #define THETA_BACK_VAL 0.06 //back angle
69 #define ROLL_MAX 0.08 //max roll angle
70 #define MAX_HORIZ_VELOCITY 20 // moving this *100 us towards/away

from the wall in 1 scan
71 //will result in ROLL_CORRECT_MAX

correction being applied
72 #define ROLL_CORRECT_MAX 0.08 // maximum correction by roll

correction
73
74 // calibrate general demo parameters
75 #define SLEEP_AFTER_TAKEOFF 5 // seconds to sleep after takeoff
76 #define SCANS_BEFORE_START 4 // number of scans to read before

starting movement commands
77 #define SCANS_BEFORE_SWITCH 10 // number of 180-deg scans before

forward/back dir switches
78 #define SWITCHES_BEFORE_LAND 7 // number of direction switches

before landing
79 #define ARRAY_LEN 13 // number of sonar readings (13 = 180/15)
80
81 // set parameters for data smoothing after reading in from the

sonars
82 #define SCAN_UP 1
83 #define SCAN_DOWN 0
84
85 // UTILITY FUNCTION TO CONTROL DRONE MOVEMENT
86 void ardrone_turn_tool(int dir , int yaw_type , float roll , int FLY)
87 {
88 float pitch;
89 if(dir == FORWARD){
90 pitch = THETA_FORWARD_VAL;
91 }
92 else{
93 pitch = THETA_BACK_VAL;
94 }
95
96 float yaw = yaw_type * YAW_VAL;
97
98 //debug output for forward angle + rotate speed
99 if(dir == FORWARD){

100 fprintf(stderr , "FORWARD , ");
101 }
102 else{

22

103 fprintf(stderr , "BACKWARD , ");
104 }
105
106 if(roll == -0.1){
107 fprintf(stderr , "LEFT ROLLMAX , ");
108 }
109 else if(roll == 0.1){
110 fprintf(stderr , "RIGHT ROLLMAX , ");
111 }
112 else if(roll > 0){
113 fprintf(stderr , "RIGHT ROLL , ");
114 }
115 else if(roll < 0){
116 fprintf(stderr , "LEFT ROLL , ");
117 }
118 else{
119 fprintf(stderr , "NO ROLL , ");
120 }
121
122 if(yaw_type == CLOCKWISE){
123 fprintf(stderr , "CLOCKWISE => ");
124 }
125 else if(yaw_type == COUNTERCLOCKWISE){
126 fprintf(stderr , "COUNTERCLOCKWISE => ");
127 }
128 else{
129 fprintf(stderr , "NO YAW => ");
130 }
131
132 fprintf(stderr , "pitch = %f, roll = %f, yaw = %f\n", pitch ,

roll , yaw);
133
134 if(FLY){ //only send command if FLY enabled
135 ardrone_at_set_progress_cmd (1,roll ,pitch ,0,yaw); //

command turn
136 }
137 }
138
139 // UTILITY FUNCTIONS TO SET UP SERIAL READING
140 //From external source: http :// stackoverflow.com/questions /6947413/

how -to -open -read -and -write -from -serial -port -in -c
141
142 int
143 set_interface_attribs (int fd, int speed , int parity)
144 {
145 struct termios tty;
146 vp_os_memset (&tty , 0, sizeof tty);
147 if (tcgetattr (fd , &tty) != 0)
148 {
149 error_message ("error %d from tcgetattr", errno);
150 return -1;
151 }
152
153 cfsetospeed (&tty , speed);
154 cfsetispeed (&tty , speed);
155

23

156 tty.c_cflag = (tty.c_cflag & ~CSIZE) | CS8; // 8-bit
chars

157 // disable IGNBRK for mismatched speed tests; otherwise
receive break

158 // as \000 chars
159 tty.c_iflag &= ~IGNBRK; // ignore break signal
160 tty.c_lflag = 0; // no signaling chars , no

echo ,
161 // no canonical processing
162 tty.c_oflag = 0; // no remapping , no delays
163 tty.c_cc[VMIN] = 0; // read doesn ’t block
164 tty.c_cc[VTIME] = 5; // 0.5 seconds read timeout
165
166 tty.c_iflag &= ~(IXON | IXOFF | IXANY); // shut off xon/

xoff ctrl
167
168 tty.c_cflag |= (CLOCAL | CREAD);// ignore modem controls ,
169 // enable reading
170 tty.c_cflag &= ~(PARENB | PARODD); // shut off parity
171 tty.c_cflag |= parity;
172 tty.c_cflag &= ~CSTOPB;
173 tty.c_cflag &= ~CRTSCTS;
174
175 if (tcsetattr (fd , TCSANOW , &tty) != 0)
176 {
177 error_message ("error %d from tcsetattr", errno);
178 return -1;
179 }
180 return 0;
181 }
182
183 void
184 set_blocking (int fd, int should_block)
185 {
186 struct termios tty;
187 vp_os_memset (&tty , 0, sizeof tty);
188 if (tcgetattr (fd , &tty) != 0)
189 {
190 error_message ("error %d from tggetattr", errno);
191 return;
192 }
193
194 tty.c_cc[VMIN] = should_block ? 1 : 0;
195 tty.c_cc[VTIME] = 5; // 0.5 seconds read timeout
196
197 if (tcsetattr (fd , TCSANOW , &tty) != 0)
198 error_message ("error %d setting term attributes",

errno);
199 }
200
201 static int32_t exit_ihm_program = 1;
202 //END OF SERIAL UTILITY FUNCTIONS
203
204 // ===
205 // DEFINE CUSTOM THREAD TO CONTROL THE DRONE
206 //(wall -following logic contained within)
207 // ===

24

208
209 PROTO_THREAD_ROUTINE(mythread , nomParams);
210 DEFINE_THREAD_ROUTINE(mythread , nomParams)
211 {
212 //our thread writes all outputs to stderr.
213 //when the ar_drone program stdout is redirected to a file ,
214 //this enables us to see just our thread ’s output in a

terminal.
215 //
216 // example execution: sudo ./ linux_sdk_demo > drone.log
217
218 // variables for wallfollow logic
219 int i, arc_start , arc_end , arc_mid;
220 int arr[ARRAY_LEN];
221 int scan_dir = SCAN_UP;
222 int angle , micros;
223 int min , min_ind;
224 int old_min = -1;
225 int FLY = 1; // change this value to disable/enable flying
226
227 // calculate ideal distance from the wall based on

thresholds
228 const int ideal_distance = (LOW_THRESH + HIGH_THRESH) / 2;
229 // calculate roll coefficient: this * distance from ideal =

roll value
230 const float roll_coefficient = ROLL_MAX / (HIGH_THRESH -

ideal_distance);
231
232 // calculate roll correction coefficient:
233 //this * distance towards wall since last scan = amount to

correct roll value in opposite dir.
234 const float roll_correct_coef = ROLL_CORRECT_MAX /

MAX_HORIZ_VELOCITY;
235
236 fprintf(stderr , "ideal dist: %d, roll_coeff: %f\n",

ideal_distance , roll_coefficient);
237 // initialize counters to zero
238 int switch_counter = 0; // counts # of direction switches so

far
239 int scan_counter = 0; // counts # of 180-deg sonar scans in

the current direction
240 int total_scan_count = 0; // number of 180-deg sonar scans

so far this flight
241
242 // initialize drone directions to move straight forward
243 int dir = FORWARD;
244 int yaw = NO_TURN;
245 float roll = 0;
246 float roll_correct;
247
248 if(FLY){
249 fprintf(stderr , "Flying commands ENABLED !\n");
250 }
251 else{
252 fprintf(stderr , "Flying commands DISABLED .\n");
253 }
254

25

255 // ---SERIAL CODE ---
256 //try opening Xbee on USB1 first , then try USB0
257 char *portname = "/dev/ttyUSB1 ";
258 char buf [100];
259 int fd = open (portname , O_RDWR | O_NOCTTY | O_SYNC);
260
261 if (fd < 0)
262 {
263 error_message ("error %d opening %s: %s\n", errno ,

portname , strerror (errno));
264 portname = "/dev/ttyUSB0 "; //try the other USB

option
265 fd = open (portname , O_RDWR | O_NOCTTY | O_SYNC);
266
267 if (fd < 0)
268 {
269 error_message ("error %d opening %s: %s\n",

errno , portname , strerror (errno));
270 THREAD_RETURN (1); // neither USB port

worked
271 }
272 }
273
274 fprintf(stderr , "USB open successful: %s\n", portname);
275
276 set_interface_attribs (fd, B9600 , 0); //set 9600bps ,

parity
277 set_blocking (fd, 1); // set blocking
278 FILE *fp = fdopen(fd, "r");
279
280 // ---END OF SERIAL CODE ---
281
282
283 // ---WALLFOLLOW LOGIC ---
284
285 fprintf(stderr , "Taking off now ...\n");
286 if(FLY){
287 ardrone_tool_set_ui_pad_start (1);
288 }
289 fprintf(stderr , "sleeping for SLEEP_AFTER_TAKEOFF seconds

...\n");
290 sleep(SLEEP_AFTER_TAKEOFF); //tweak this value
291 fprintf(stderr , "takeoff routine complete , main logic

beginning ...\n");
292
293 fflush(fp); //flush the scans we got on the serial line

while taking off
294
295 while (1){ //run this loop indefinitely
296
297 // default movements
298 yaw = NO_TURN;
299 roll = 0;
300
301 fprintf(stderr , "\nSCAN RESULTS :\n");
302 while(fgets(buf , 100, fp) == NULL); //wait while

nothing to process from serial input

26

303 while(fgets(buf , 100, fp) != NULL){
304 sscanf(buf , "%d:%d\n", &angle , µs);
305 if(micros > 1000){ // discard erroneous

readings below 1000
306 arr[angle /15] = micros /100; //store

recorded sonar value in array
of readings

//(if a
reading is missed , the

previously scanned value
remains)

307
308 // process the scan data if we reach

either endpoint of the scan
309 if(angle == 0){
310 scan_dir = SCAN_DOWN;
311 break;
312 }
313 if (angle == 180){
314 scan_dir = SCAN_UP;
315 break;
316 }
317 }
318 }
319
320 arc_start = arc_end = arc_mid = 0;
321 min = INT_MAX;
322
323 min_ind = 0; // useless init value to stop compiler

warnings , should be overwritten always
324
325 //Find min
326 for (i = 0; i < ARRAY_LEN; i++) {
327 if (arr[i] < min) {
328 min = arr[i];
329 min_ind = i;
330 }
331 }
332
333 if(old_min == -1) old_min = min; //init old_min on

first scan
334
335 //Find the arc start - and end - points
336 arc_start = arc_end = min_ind; //in case the arc is

one wide
337 i = min_ind -1;
338 while (i >= 0 && abs(arr[i]-min) < ARC_BAND) {
339 arc_start = i;
340 i--;
341 }
342 i = min_ind +1;
343 while (i < ARRAY_LEN && abs(arr[i]-min) < ARC_BAND)

{
344 arc_end = i;
345 i++;
346 }

27

347 arc_mid = (arc_start+arc_end)/2; //index which is
the center of the arc

348
349 // adjust arc readings based on scan direction
350 // this compensates for inaccuracies in scan data

depending on scan direction
351 if (scan_dir == SCAN_DOWN && arc_mid < ARRAY_LEN){
352 arc_start ++;
353 arc_end ++;
354 arc_mid ++;
355 }
356 else if (scan_dir == SCAN_UP && arc_mid > 0){
357 arc_start --;
358 arc_end --;
359 arc_mid --;
360 }
361
362 //print sonar readings to terminal
363 fprintf(stderr , "BACK ranges: [");
364 for(i = 0; i < 13; i++){
365 fprintf(stderr , "%4d ", arr[i]);
366 }
367 fprintf(stderr , "] FRONT\n");
368
369 //print arc calculation readings to terminal
370 fprintf(stderr , "BACK arc: [");
371 for(i = 0; i < 13; i++){
372 if(i == arc_mid){
373 fprintf(stderr , "MMMMM");
374 }
375 else if(i >= arc_start && i <= arc_end){ //

in arc
376 fprintf(stderr , "*****");
377 }
378 else{
379 fprintf(stderr , " ");
380 }
381 }
382 fprintf(stderr , "] FRONT\n");
383 fprintf(stderr , "arc_start: %d, arc_end: %d,

arc_mid: %d\n", arc_start , arc_end , arc_mid);
384
385 // ignore the first couple scans , which may not

contain full data
386 total_scan_count ++;
387 if(total_scan_count <= SCANS_BEFORE_START){
388 fprintf(stderr , "DISCARDING THIS INITIAL

SCAN DATA\n");
389 continue;
390 }
391
392
393 if(arc_start < arc_end){ //only send a command if

arc more than 1 wide , prevents noise
394
395 // control based on yaw angle

28

396 if (arc_mid > BOX_END) { //front of drone
pointed away from wall

397 fprintf(stderr , "OUTTA THE BOX YO ,
front pointed TOWARDS WALL!\n")
;

398 yaw = CLOCKWISE;
399 }
400 else if (arc_mid < BOX_START) { //front of

drone pointed towards wall
401 fprintf(stderr , "OUTTA THE BOX YO ,

front pointed AWAY FROM WALL!\n
");

402 yaw = COUNTERCLOCKWISE;
403 }
404 else {
405 fprintf(stderr , "GOOD ANGLE , DO NOT

TURN\n");
406 yaw = NO_TURN;
407 }
408
409 // control based on distance from wall
410 roll = (ideal_distance - min) *

roll_coefficient; // ideal_dist - min
gives a negative #, appropriately

411
412 //limit roll within roll_max
413 if(roll < (-1 * ROLL_MAX)){
414 roll = -1 * ROLL_MAX;
415 }
416 else if (roll > ROLL_MAX){
417 roll = ROLL_MAX;
418 }
419
420 if(old_min != -1){ //make sure it’s

initialized
421 //add roll correction to roll value
422
423 // compute correction based on

difference between current min
and previous min

424 roll_correct = (old_min - min) *
roll_correct_coef;

425 if(roll_correct > (ROLL_CORRECT_MAX
)) roll_correct =
ROLL_CORRECT_MAX;

426 if(roll_correct < (-1 *
ROLL_CORRECT_MAX)) roll_correct
= -1 * ROLL_CORRECT_MAX;

427 fprintf(stderr , "roll correction: %
f\n", roll_correct);

428 roll += roll_correct;
429
430 }
431 }
432 else{
433 //if the arc is only one wide , don ’t send

any command

29

434 fprintf(stderr , "NO SUFFICIENTLY WIDE ARC
FOUND. DO NOT TURN\n");

435 yaw = NO_TURN;
436 }
437
438 if (scan_dir == SCAN_DOWN){
439 fprintf(stderr , "scan_dir is SCAN_DOWN ,

INCREMENTED VALUES\n");
440 }
441 else if (scan_dir == SCAN_UP){
442 fprintf(stderr , "scan_dir is SCAN_UP ,

DECREMENTED VALUES\n");
443 }
444
445 //SEND the movement commands that were calculated
446 ardrone_turn_tool(dir , yaw , roll , FLY); //will only turn if FLY

is enabled
447
448 // switch directions after the specified number of scans
449 scan_counter ++;
450 if (scan_counter >= SCANS_BEFORE_SWITCH) {
451 scan_counter = 0; //reset scan counter
452 switch_counter ++; //keep track of direction

switch count
453 dir *= -1; // switch directions
454 fprintf(stderr , "flight counter overflow ,

switching directions to ");
455 if(dir == FORWARD){
456 fprintf(stderr , "FORWARD\n");
457 }
458 else{
459 fprintf(stderr , "BACKWARD\n");
460 }
461
462 if(switch_counter >= SWITCHES_BEFORE_LAND){
463 //land the drone , end of flight
464 fprintf(stderr , "switch counter

overflow , landing ...\n");
465 break; //exit the while 1 loop
466 }
467 }
468
469 old_min = min;
470 }
471
472 // always land before completing the program! we don ’t want

a stranded drone
473 if(FLY){
474 ardrone_tool_set_ui_pad_start (0);
475 }
476
477 close(fd);
478 THREAD_RETURN (0);
479 }
480
481 // =============================
482 // BOILERPLATE AR_DRONE API CODE

30

483 // =============================
484
485 /* The delegate object calls this method during initialization of

an ARDrone application */
486 C_RESULT ardrone_tool_init_custom(int argc , char **argv)
487 {
488 /* Registering for a new device of game controller */
489 ardrone_tool_input_add(&gamepad);
490
491 /* Start all threads of your application */
492 START_THREAD(mythread , NULL);
493 START_THREAD(video_stage , NULL);
494
495 return C_OK;
496 }
497
498 /* The delegate object calls this method when the event loop exit

*/
499 C_RESULT ardrone_tool_shutdown_custom ()
500 {
501 /* Relinquish all threads of your application */
502 JOIN_THREAD(video_stage);
503
504 /* Unregistering for the current device */
505 ardrone_tool_input_remove(&gamepad);
506
507 return C_OK;
508 }
509
510 /* The event loop calls this method for the exit condition */
511 bool_t ardrone_tool_exit ()
512 {
513 return exit_ihm_program == 0;
514 }
515
516 C_RESULT signal_exit ()
517 {
518 exit_ihm_program = 0;
519
520 return C_OK;
521 }
522
523 /* Implementing thread table in which you add routines of your

application and those provided by the SDK */
524 BEGIN_THREAD_TABLE
525 THREAD_TABLE_ENTRY(ardrone_control , 20)
526 THREAD_TABLE_ENTRY(navdata_update , 20)
527 THREAD_TABLE_ENTRY(video_stage , 20)
528 THREAD_TABLE_ENTRY(mythread , 20)
529 END_THREAD_TABLE

31

