Improving performance of schemaless
document storage in PostgreSQL using BSON

Geoffrey Litt

Seth Thompson

John Whittaker

Yale University

geoffrey.litt@yale.edu

Abstract

NoSQL database systems have recently been gaining
in popularity. These databases provide schema flexi-
bility compared to traditional relational databases like
PostgreSQL, but consequently give up certain desir-
able features such as ACID guarantees. One compro-
mise is to store schemaless documents within a re-
lational database—an architecture which PostgreSQL
has recently made possible by adding native support for
JSON (JavaScript Object Notation), a common format
for multi-level key-value documents.

Currently, PostgreSQL provides validation of JSON
documents upon input and native operators for query-
ing operators within a JSON document. However, it
stores JSON documents internally as text, which is in-
efficient for many use cases. In this paper, we imple-
ment support for BSON (Binary JSON), a lightweight
binary encoding format for JSON-like documents which
enables fast traversals. We observe that using BSON to
store documents increases performance by two to eight
times when querying keys within documents, without
compromising document insertion times.

NoSQL, RDBMS
PostgreSQL, JSON, BSON

General Terms

Keywords

1. Introduction

With the rapid growth over the past decade of big
data fueled by data-driven applications, the field of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CPSC 438 Final Project April 29, 2013, New Haven, CT.
Copyright © 2013 ...$15.00

seth.thompson@yale.edu

john.whittaker@yale.edu

database systems has exploded, in terms of both size
and variety. The traditional Relational Database Man-
agement Systems (RDBMSs) that have ruled the mar-
ketplace for decades are still the best option for many
use cases, but NoSQL systems such as MongoDB [1]
are increasing in popularity. Some benefits provided
by NoSQL databases include a simpler key-value data
model, strong support for cluster environments (espe-
cially those composed of commodity hardware), and
emphasis on availability over consistency.

Some have suggested that a way for RDBMSs to
compete with NoSQL competitors—or at least to inno-
vate in a time of changing needs—is to offer the ability
to store schemaless documents within a traditional rela-
tional framework [2]. This feature allows users to lever-
age the ACID guarantees, performance benefits, code
maturity, and other advantages of a relational database,
while also offering schema flexibility when required.

The open-source database PostgreSQL [3] recently
released such support. In late 2012, the latest stable
build, version 9.2, added a native JSON data type.
JSON is a human-readable format for schemaless doc-
ument storage. Postgres’ implementation simply ap-
plied JSON validation to a stored text field contain-
ing a string representing each document. At the time
of the release, querying values within a document re-
quired using an external JavaScript engine for pars-
ing sub-document elements. The current development
build (9.3dev) has improved the built-in functionality
by adding native operators to query values within a
JSON document, without the need for shared libraries
or external functions.

The operator syntax is simple: an operation like
SELECT data->’keyl’ FROM json documents will
return the value associated with the key "key1", in the
JSON-type data column “data”.

Although these developments are clearly useful,
their scope is limited by the fact that the JSON type in
PostgreSQL remains a simple syntax validation. JSON
documents are stored in human-readable text format in
the database—without any optimizations for efficient
storage or fast traversal. This approach enables doc-
uments to be easily passed to clients and end users,
but does not necessarily enable performant querying of
values within a document.

In contrast, the popular NoSQL database Mon-
goDB stores documents internally in the BSON binary
format. BSON is a lightweight binary encoding for
JSON-like documents, which is specifically designed
for speedy traversal compared to the human-readable
JSON format.

To clarify a matter of semantics, this paper uses
”JSON-like” to refer specifically to the format of the hi-
erarchical data document shared by both JSON proper
and BSON. This format is identical to the end user (hu-
man or machine) in that both JSON proper and BSON
documents are simply strings of keys and values orga-
nized into dictionaries or arrays by braces and brackets,
respectively. In the case of JSON proper, this format is
also how the document is encoded for storage. But in
the case of BSON, the interchange format is further en-
coded for storage into a binary blob, a process which is
described in more detail in Section 2.3.

In this paper, we describe our implementation of a
native BSON type in PostgreSQL. We implement a
user-facing interface which is nearly identical to the
JSON interface—users insert documents using JSON
syntax (which enables nesting of objects, arrays, etc.),
and query values within a document using the oper-
ator syntax introduced by PostgreSQL 9.3. However,
the backend storage mechanism is completely differ-
ent. Our implementation parses the JSON document
into key-value pairs upon insertion, and then constructs
a BSON document which encodes the same informa-
tion in BSON format. Upon querying, instead of having
to parse the text document as in JSON, the BSON im-
plementation can directly iterate over keys, providing
significant performance advantages.

We found performance gains across data sets of
widely varying tuple size and document size. In some
tests, queries performed on keys in BSON documents
ran over eight times as fast as those on correspond-
ing JSON documents. BSON was performant for many
data types and on deep queries of large numbers of tu-

ples, suggesting that our results hold for a wide variety
of data sets. Ultimately, we believe that BSON’s ad-
vantages merit its replacement of JSON in almost all
use cases.

The rest of the paper is organized as follows: Section
2 provides background information on PostgreSQL,
JSON, and BSON. Section 3 describes our implemen-
tation of BSON in PostgreSQL. Section 4 presents per-
formance results when querying values inside a docu-
ment in JSON and BSON, with a variety of data sets
and use cases. Section 5 gives our conclusions and
plans for future work.

2. Background
2.1 PostgreSQL

PostgreSQL [3] is an open-source relational database
system. It implements the majority of the most recent
ISO and ANSI standard for the SQL database query
language, has ACID-guarantees, and is fully transac-
tional. Among PostgreSQL’s advantages are its avail-
ability for numerous platforms, highly extensible archi-
tecture, support for complex data types, and mature, 15-
year-old codebase. We decided to modify PostgreSQL
because it is a reliable and efficient database system,
and because it already had support for schemaless doc-
ument storage.

PostgreSQL currently has three methods for storing
schemaless data: XML, hstore, and JSON. XML is
a hierarchical structured data format which became a
W3C standard in 1998. The format was the backbone
of the SOAP network message passing protocol and is
still used today by many Java applications as a markup
language. However, XML’s age is starting to show:
many criticize its verbosity and complex feature set [4].
It is also the slowest of PostgreSQL’s document storage
types, and features no indexing [5].

The second unstructured storage type implemented
in PostgreSQL is hstore, which maps keys to string
values or other hstore values. Although hstore is highly
expressive, the lack of nested documents and multiple
types limits its functionality as a versatile schemaless
store.

The last, and most recently added schema, is JSON,
described in detail in the following section. Initially
conceived as JavaScript’s structure declaration format,
JSON was turned into a language-agnostic protocol.
Today it enjoys ubiquity as a data exchange format

{

"firstName": "George",
"lastName": "Washington,
"phoneNumbers": [

{

“type": “home“,
"number": "203 123 4567"

3,
{
"type": "business",
"number: "202 345 6789"
}
]
}

Figure 1. An example JSON document

across many modern website. JSON is the most perfor-
mant of PostgreSQL’s document storage methods [5]

2.2 JSON

JavaScript Object Notation [6] is a lightweight data-
interchange format derived from JavaScript. It is de-
signed to be easy for humans to read and write and
for machines to parse. An object in JSON is a set
of key-value pairs which can be organized into arrays
and nested objects. Values can be strings, booleans, or
arbitrary-precision numbers. This allows for extremely
flexible object representation, including embedding of
an arbitrary number of related objects, making JSON a
suitable data format for a NoSQL database. Figure 1 is
an example of JSON (and any equivalent "JSON-like”
format).

This example demonstrates the power of JSON as
a representation format—the document can store any
number of phone numbers for the user, without requir-
ing another table and a join operation.

2.3 BSON

BSON [7] is a binary serialization of JSON-like docu-
ments, developed for the NoSQL database MongoDB
and designed for performant traversal. It is generally
capable of storing any JSON document, with some
minor caveats. The biggest difference is that JSON
stores numbers as arbitrary precision character strings,
whereas BSON can only store numbers as 32- and 64-
bit integers or 64-bit double precision floats, in order to
make storage simpler. (Of course, a careful program-
mer can easily store arbitrary precision numbers as

strings in BSON, just as in JSON.) Additionally, BSON
enforces a maximum document size of 16 MB (which is
unlikely to be exceeded in most circumstances).

BSON has several advantages compared to JSON
which enable fast traversal. Many types (e.g. integers,
booleans) are stored as fixed length fields, as opposed
to variable length fields which must be parsed in JSON.
For example, a boolean in BSON is represented by a
single byte, as opposed to several bytes representing the
word “true” or “false” in JSON. Additionally, BSON
uses native C data types for many types such as integers
and floats, which enables compact storage and more
efficient parsing. Finally, BSON also encodes length
information for variable length fields like strings, so
they can be skipped over easily when querying for
a specific key deep in the document. BSON is not
necessarily more compact on disk than the equivalent
JSON, but can almost always be traversed more quickly
for these reasons.

3. Implementing BSON in PostgreSQL

We heavily utilized two open-source libraries to com-
plete this project. To implement BSON writing and
parsing functionality, we used the mongo-c-driver
library [8] from MongoDB. We also used the json-c
library [9] to implement JSON parsing, which was nec-
essary to translate user JSON input to a series of key-
value pairs which could be encoded as BSON.

The implementation can be divided into two main
parts: storage of input, and querying keys. When stor-
ing input, we use the JSON library to parse the in-
put, and iteratively construct a BSON object from the
parsed object. For querying within the BSON docu-
ment, we created functions which use the BSON library
to find the desired key, and registered operators in the
PostgreSQL function catalog to execute these functions
on BSON data.

The operators we created to query BSON data are a
superset of the operators which can be used to query
JSON in PostgreSQL. Because BSON stores data as
native C data types, we added two operators, &> and
-#>, which take advantage of this feature to return
boolean and integer native data types instead of strings.
Whereas acquiring an integer or boolean type from a
JSON document requires an explicit cast of the queried
data, our BSON operators can directly return these
native types with no casting needed.

"user":{
"name" :"Karen",
"lastname":"Smith",
"age":15,
"country":"Norway",
"birth_year":1952,
"birth_month":11,
"birth_day":7,
"phones" : [4968387550,4408548944] ,
"address":"86 Main St., Anytown, USA",
"registered":false,
"new'":false

},
"friends": [
{"name": "Bob",...},
{"name": "Sally",...},
]

}

Figure 2. Example document to simulate a user record
in our performance evaluation

Also, because we added the BSON type alongside
the JSON type, as opposed to modifying the JSON type
to be internally represented as BSON, we were able
to easily test the two data types together in the same
database.

4. Evaluation
4.1 User document testing

To achieve realistic results, most of our tests used doc-
uments representing information for a user of a social
network application, including an array of embedded
information about other users who are ”friends” with a
given user. We randomly generated documents similar
to that in Figure 2.

4.1.1 Varying document size

Our first performance test examined performance when
querying a document key, while varying document size.
For each trial, we generated a table with a single col-
umn of type JSON or BSON, and inserted 1000 rows
into these tables, each row containing one user doc-
ument of the type above. We then executed a query
on a key in the document (e.g. SELECT data ->
’friends’ -> 50 -> ’registered’ FROM json)

40

30

—o— JSON
—eo— BSON
—— Speedup

20

Transactions/second

10

0 20 40 60 80
Document size

Figure 3. Relative performance of BSON and JSON
for increasing document size over a constant number
of tuples

on each entire table, using the pgbench tool built into
PostgreSQL to repeat the query 10 times and deter-
mine an average transactions per second metric for both
JSON and BSON.

Then, to determine the effect of document size on
the relative performance of JSON and BSON query-
ing, between trials we varied the number of embedded
“friend” user documents from 1 to 90. The results of
this test are shown in Figure 3, along with a speedup
ratio between BSON and JSON.

BSON performs much faster than JSON for most
document sizes, and the speedup ratio increases with
larger document size. With 90 embedded friends, BSON
performs the select query 8.28 times faster than JSON.

This result serves as preliminary evidence that BSON
can traverse a document much more rapidly than JSON,
leading to higher performance. Our proposed expla-
nation is that as document size increases, time spent
traversing the document searching for a given key takes
a greater fraction of total query execution time (com-
pared to other overhead), and the traversal information
in the BSON encoding becomes increasingly helpful
for performance. However, because other factors are
also changing (e.g. total data size increases with docu-
ment size), further exploration is necessary to establish
that the traversal speed is responsible for the speedup,
as opposed to other factors like BSON’s more compact
representation on disk.

Speedup factor (BSON to JSON)

[T T T T T T T T T T T T T T T T T T
3L
10 g 6
2 L
§ 102§ 5
5 101; 4
g
g i 3
E 00
= 10 | —e— JSON p
B —e— BSON 2
1l —— Speedup p
10 lgum\ Lol Lol Lol Lol
10° 10t 102 103 10

Number of tuples

Figure 4. Relative performance of BSON and JSON
for increasing number tuples with a constant document
size

4.1.2 Varying table size

In our next test, we explored again used “user” doc-
uments, but this time kept document size constant at
50 embedded friends. We incrementally increased the
number of rows in the table from 1 to 10,000, and
observed the performance of JSON and BSON on a
SELECT query on a key in the document, over the en-
tire table. The results are shown in Figure 4 (notice the
logarithmic scaling).

After the number of tuples exceeded 100, the BSON
speedup factor remained constant at about 6 times
JSON’s query speed. This shows that the BSON datatype
can efficiently maintain its performance advantage for
relatively large table sizes.

4.1.3 Key position effect

We devised a test to conclusively determine whether
BSON’s traversal speed is responsible for its faster
performance: comparing performance when querying
a key near the beginning or the end of a document.

We queried user documents with 50 embedded
friends for this test. For the key near the beginning
of the document, we queried the “name” key which is
first in the user document. For the key near the end, we
queried a key within one of the user’s friends stored
near the end of the document. We tried the experiment
with several table sizes for variety.

Figure 5 shows the results of these tests, comparing
the BSON speedup factor for each of the key positions

Speedup factor (BSON to JSON)

Querying keys in different positions
| | |

6.5 6.9 B
> , .
5 6.09
L 6f a
= 5.62
Z 550 |
A
S
e *
8 4.6 458
545) .
3 412
a4l |
I I I
Small Medium Large
Table size
[0 Key near beginning
0 Key near end

Figure 5. Comparison of the BSON speedup factor for
keys near the beginning and end of documents.

across three table sizes. Clearly, the BSON speedup
factor is significantly greater when querying a key near
the end of a document.

This result indicates that the BSON implementa-
tion is gaining performance benefits from traversal
speed. Both the Postgres JSON implementation and
our BSON implementation iterate through a document
one key at a time, searching for a match. The JSON
parser has to go character by character parsing the doc-
ument, whereas the BSON parser can easily skip over
all values using included traversal information. As pre-
viously mentioned, the BSON format is specifically
designed for easy traversal, and this test shows off the
performance advantages of that design.

4.2 Document composition testing

Next, we tested the performance of JSON and BSON
on documents storing only values of one specific type
of data: strings, integers, and booleans. These docu-
ments do not take advantage of the flexibility of a
schemaless database, but because BSON has efficient
storage mechanisms for integer and boolean types, they
can further demonstrate some of the primary advan-
tages of the format.

We created JSON and BSON tables with 10,000
documents, where each document was made of 1,000

Performance of different data types
| |

|
L2r 1.12
1 [-
-~ 0.89
=
§ 0.8 .
g 06) |
§ 04| 0.36 i
0.2 011 0.17 0.19 i
I I I
Strings Integers Booleans
Data type
loJSON
l0BSON

Figure 6. Comparison of the BSON speedup factor for
documents containing exclusively one data type.

key-value pairs. All the values in each document were
either booleans, 32-bit integers, or 10-character-long
strings (all randomly generated), depending on the type
being tested. We then queried a key in the middle of the
document across all rows for both JSON and BSON,
measuring performance of the queries. The transaction
speeds in JSON and BSON documents for each data
type are shown in Figure 6.

As expected, BSON provides a speedup of over five
times for documents containing integer and boolean
types. BSON stores integers in a fixed-width 4-byte
binary format, and stores booleans as a single byte;
in contrast, JSON stores integers as strings of digits
(32 bit integers can take up to 10 characters to repre-
sent), and booleans as several characters representing
the word ’true” or “false”. As a result, BSON docu-
ments with integers and booleans are much smaller on
disk than the corresponding JSON documents, reduc-
ing disk I/O time. The traversal benefits of the BSON
parser which have been discussed also apply. This re-
sult suggests that applications which store documents
with many integers, booleans, and other fixed length
types would generally benefit most from using the
BSON format, due to the storage compression bene-
fits.

1,000 tuples 10,000 tuples 100,000 tuples
JSON | 6.100s 62.09s 630000s
BSON | 6.139s 62.95s 635600s

Figure 7. Comparison of total loading times between
JSON and BSON for 1000, 10,000, & 100,000 inserts.

Documents containing strings also gain a perfor-
mance advantage of over three times from using BSON,
because BSON encodes length information before a
variable length string, making traversal easier. How-
ever, string data still takes up the same number of
bytes in JSON and BSON, so unlike in the integer and
boolean cases, BSON gains no disk I/O advantage.

This set of tests demonstrates that BSON has two
different advantages which combine to provide a per-
formance boost: it takes less computation time to tra-
verse because it uses encoded metadata to skip by el-
ement instead of searching for keys character by char-
acter. Moreover, it takes less space on disk for certain
kinds of data (but not all), often reducing I/O time.

4.3 Loading speed

PostgreSQL’s native JSON type directly stores the
user’s input string to disk, whereas our BSON type
parses the input into a more efficient format upon in-
sertion. Therefore, although BSON has clearly been
shown to have performance benefits upon read, inser-
tion performance is a legitimate concern.

However, we measured write times and discovered
that BSON loads almost exactly as fast as JSON. In
fact, insertion of 1000, 10,000, & 100,000 tuples into
a table of BSON documents was less than one percent
slower than the same insertions into a column of JSON
documents. Figure 7 details the loading times in sec-
onds. Clearly, BSON’s performance gain in subdocu-
ment querying does not come at the expense of perfor-
mant loading times.

In fact, PostgreSQL’s native JSON type also does
parsing upon input, to validate the JSON string being
inserted, so BSON is not at a disadvantage because
of parsing upon insertion. We currently still use the
built-in JSON validator to validate user input, and if
we developed the code further, we could use the BSON
parser to validate input and return appropriate errors,
eliminating the need for the JSON validator and pos-
sibly making BSON inserts even faster than JSON in-
serts.

5. Conclusions and Future Work

This paper has presented an implementation of BSON
for PostgreSQL which provides significant perfor-
mance benefits over text-based JSON when querying
within a schemaless document. As RDBMSs try to
compete with NoSQL databases by offering support
for storage of documents, read performance will be
a crucial differentiator, and implementing performant
data storage formats such as BSON could prove to be a
major equalizer.

In future work, we plan to extend our code to cover
all data types, and add further operators for efficient
querying. Additionally, our BSON implementation is
currently baked into a fork of the PostgreSQL source
code, but it would be far more useful to the commu-
nity if it were implemented as an external module. We
plan to do further development work to make the code
production-ready, add unit tests, and release it as an
open source extension.

References

[1] MongoDB. www.mongodb.org.

[2] A. Floratou, N. Teletia, D. DeWitt, J. Patel, and D.
Zhang. Can the Elephants Handle the NoSQL Onslaught?
In Proceedings of the VLDB Endowment, Vol. 5, No. 12.

[3] PostgreSQL. www.postgresql.com.

[4] J. Atwood. XML: The Angle Bracket Tax.
http:/fwww.codinghorror.com/blog/2008/05/xml-the-
angle-bracket-tax.html.

[5] C. Pettus. PostgreSQL as a Schemaless Database.
http://mosql.mypopescu.com/post/47692111874/posgresql-

as-a-schemaless-database.
[6] JSON. json.org.
[71 BSON. bsonspec.org.
[8] mongo-c-driver. github.com/mongodb/mongo-c-driver
[

9] json-c. github.com/json-c/json-c

